插值是通过cell样本数据计算得到的一幅栅格影像,作用是预测某一区域内样本数据以外的该属性值。在高程,降雨量,矿产,噪音分析等具有广泛应用。
以下是几种在ArcGIS中常见的插值方法:
IDW:确定性插值方法。每个栅格单元内的样本点数据距离单元内加权平均距离点的距离为自变量,点对平均距离点的影响与其距离幂值成反比,适合样本密集情况下进行分析。
Kriging:与IDW类似,通过半变异函数,可以对预测的确定性或准确性提供某种度量。
Natural neighbour:可找到距查询点最近的输入样本子集,并基于区域大小按比例对这些样本应用权重来进行插值。
Spline:确定性插值方法。使用可最小化整体表面曲率的数学函数来估计值,以生成恰好经过输入点的平滑表面。
Spline with Barriers:障碍以面要素或折线 (polyline) 要素的形式输入。过单向多格网技术,以初始的粗糙格网(在本例中是已按输入数据的平均间距进行初始化的格网)为起点在一系列精细格网间移动,直至目标行和目标列的间距足以使表面曲率接近最小值为止。
Topo to Raster:旨在用于创建可更准确地表示自然水系表面的表面,而且通过这种技术创建的表面可更好的保留输入等值线数据中的山脊线和河流网络。
Trend:由数学函数(多项式)定义的平滑表面与输入样本点进行拟合的全局多项式插值法。趋势表面会逐渐变化,并捕捉数据中的粗尺度模式。