题号放这里自己去找吧。
HDU-2566
这题最开始用的dp,然后,被同学用奇思妙想过了。 >_< 开心!
-_- !! 然后,被我线性代数给过了。
方法一:dp
将其化为01背包,只不过每种物品可以重复取的各数和为n就行。
好了,代码如下:
#include<iostream> #include<cstring> using namespace std; int dp[1001][1001]; int w[]={0,1,2,5}; int main() { int k, n, v; cin>>k; while(k--) { memset(dp, 0,sizeof(dp)); cin>>n>>v; dp[0][0]=1; for(int i=1;i<=3;i++) { for(int k=1;k<=n;k++) for(int j=w[i]; j<=v;j++) dp[k][j]+=dp[k-1][j-w[i]]; } cout<<dp[n][v]<<endl; } }
哎呀,背包都差不多忘了。得复习了。
方法二:
因为 2 2 2 2 可以转化为 1 1 1 5啊;也就是说找最多的2的方案,当然余出来的1是不可组的。当然,最多2的情况来转化1115的情况
#include<cstdio> int main(){ int T; scanf("%d",&T); while(T--){ int n, m; int a=0,b=0,c=0; scanf("%d%d",&n,&m); for(int i=0;i<=n;i++){ for(int j=0;j+i<=n;j++){ if(j*2+i+(n-j-i)*5 == m){ b = j; i = n; break; } } } printf("%d\n",1+b/4); } return 0; }
感觉这个方法,我也不是很清楚。可能没说明白。
方法三:
设a , b, c分别是1元 2元 5元的个数,那么也就是a+b+c=n和a+2*b+5*c=m这样就构成了一个矩阵方程。直接解开这个矩阵方程就行啦。
当然,还有更加明白的解释方法。一只3个未知数和两个约数条件,那么我们可以利用高中学过的消元,用一个未知数表示其他两个未知数。
即得到b = -4 * c + m - n;
a = 3 * c+ 2 * n - m;这两个公式,然后直接枚举c就可以了,注意的是,a+b+c=n一定是成立的。但是,由于数学公式要满足实际问题的需要
我们只能取a, b大于等于0的情况。
1 #include<cstdio> 2 3 int main() 4 { 5 int t; 6 scanf("%d", &t); 7 while (t--) 8 { 9 int n, m; 10 scanf("%d%d", &n, &m); 11 int a, b, c = 0; 12 int ans = 0; 13 while (1) 14 { 15 b = -4 * c + m - n; 16 a = 3 * c+ 2 * n - m; 17 if (b>=0&&a>=0)ans++; 18 else if (b < 0) break; 19 c++; 20 } 21 printf("%d\n", ans); 22 } 23 return 0; 24 }