使用python3抓取链家二手房数据

有小伙伴说想拿链家二手房信息做数据分析,让帮忙抓点数据。并没有搞过,网上搜了一些资料试了一下,感觉不难可以搞,下面小结一下。

工具

  • python3
  • python的三方库:
    • BeautifulSoup(用于解析数据)
    • pandas(用于处理数据,存储成Excel)
    • requests (用于发送请求)

三方库库的安装也比较简单,直接使用 pip install 相应的库名 即可:

pip install pandas
pip install requests
pip install beautifulsoup4
复制代码

思路

抓包基本的意思就是用代码模拟用户的请求,然后解析相应的网页内容,择取出需要的信息即可。 简单看了一下链家的网页结构,是比较整齐的。这种就是深圳二手房列表分页的链接:

https://sz.lianjia.com/ershoufang/pg1
https://sz.lianjia.com/ershoufang/pg2
...
https://sz.lianjia.com/ershoufang/pg99
https://sz.lianjia.com/ershoufang/pg100
复制代码

可以请求一下这个链接,然后解析返回结果,可以抓取到每一个房子详情页面的链接。我这边是通过正则匹配的方式解析的(详情参考源码中catchHouseList函数)。解析的结果大概像这样子:

https://sz.lianjia.com/ershoufang/105101151981.html
https://sz.lianjia.com/ershoufang/105101102328.html
https://sz.lianjia.com/ershoufang/105100779210.html
https://sz.lianjia.com/ershoufang/105101254525.html
https://sz.lianjia.com/ershoufang/105101201989.html
https://sz.lianjia.com/ershoufang/105101262457.html
复制代码

获取详情链接之后,再请求这个详情链接,可以获得到详情信息。把获取到的详情信息通过 BeautifulSoup 解析,就能得到你要的数据。 最后,把这个数据通过 pandas 写入到Excel中即可(参考appendToXlsx函数)。写的时候是append的方式。

注意的是因为大部分网站对于链接访问都有一些限制,诸如访问太频繁了,服务器可能认为这个请求不正常,不会返回正确结果。因此每次请求一个网页之后,会等一会儿再请求下一个网页。不至于被服务器拒绝。

# 我这里设置为3秒
time.sleep(3)
复制代码

源码

下面是我的源码,应该安装完相应的三方库,在python环境运行下面的代码即可:


import requests
from bs4 import BeautifulSoup
import sys
import os
import time
import pandas as pd
import numpy as np
from parsel import Selector
import re



headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 BIDUBrowser/8.7 Safari/537.36'
    }


def catchHouseList(url):
    resp = requests.get(url, headers=headers, stream=True)
    if resp.status_code == 200:
        reg = re.compile('<li.*?class="clear">.*?<a.*?class="img.*?".*?href="(.*?)"')
        urls = re.findall(reg, resp.text)
        return urls
    return []

def catchHouseDetail(url):
    resp = requests.get(url, headers=headers)
    print(url)
    if resp.status_code == 200:
        info = {}
        soup = BeautifulSoup(resp.text, 'html.parser')
        info['标题'] = soup.select('.main')[0].text
        info['总价'] = soup.select('.total')[0].text
        info['总价单位'] = soup.select('.unit')[0].text
        info['每平方售价'] = soup.select('.unitPriceValue')[0].text
        # p = soup.select('.tax')
        # info['参考总价'] = soup.select('.tax')[0].text
        info['建造时间'] = soup.select('.subInfo')[2].text
        info['小区名称'] = soup.select('.info')[0].text
        info['所在区域'] = soup.select('.info a')[0].text + ':' + soup.select('.info a')[1].text
        info['链家编号'] = str(url)[34:].rsplit('.html')[0]
        info['房屋户型'] = str(soup.select('.content')[2].select('.label')[0].next_sibling)
        info['所在楼层'] = soup.select('.content')[2].select('.label')[1].next_sibling
        info['建筑面积'] = soup.select('.content')[2].select('.label')[2].next_sibling
        info['户型结构'] = soup.select('.content')[2].select('.label')[3].next_sibling
        info['套内面积'] = soup.select('.content')[2].select('.label')[4].next_sibling
        info['建筑类型'] = soup.select('.content')[2].select('.label')[5].next_sibling
        info['房屋朝向'] = soup.select('.content')[2].select('.label')[6].next_sibling
        info['建筑结构'] = soup.select('.content')[2].select('.label')[7].next_sibling
        info['装修情况'] = soup.select('.content')[2].select('.label')[8].next_sibling
        info['梯户比例'] = soup.select('.content')[2].select('.label')[9].next_sibling
        info['供暖方式'] = soup.select('.content')[2].select('.label')[10].next_sibling
        info['配备电梯'] = soup.select('.content')[2].select('.label')[11].next_sibling
      #  info['产权年限'] = str(soup.select('.content')[2].select('.label')[12].next_sibling)
        return info
    pass

def appendToXlsx(info):
    fileName = './链家二手房.xlsx'
    dfNew = pd.DataFrame([info])
    if(os.path.exists(fileName)):
        sheet = pd.read_excel(fileName)
        dfOld = pd.DataFrame(sheet)
        df = pd.concat([dfOld, dfNew])
        df.to_excel(fileName)
    else:
        dfNew.to_excel(fileName)


def catch():
    pages = ['https://sz.lianjia.com/ershoufang/pg{}/'.format(x) for x in range(1, 1001)]
    for page in pages:
        print(page)
        houseListURLs = catchHouseList(page)
        for houseDetailUrl in houseListURLs:
            try:
                info = catchHouseDetail(houseDetailUrl)
                appendToXlsx(info)
            except:
                pass
            time.sleep(3)

    pass

if __name__ == '__main__':
    catch()
    
复制代码

瞎墨迹

  • 虽然技术含量并不高,只是涉及到一些三方工具的使用。不过实践的过程中还是遇到一些问题,诸如对pandas的使用,因为从未接触过,就折腾了很久。大概很多看起来很简单的东西,真正弄起来的时候,依旧有预料不到的问题。
  • 其次是抓包这件事,技术上觉得并不奇特(当然有些网站的抓包还是有难度的),但是小伙伴需要这个,也许一件事情并不仅仅从技术上考量其价值。

参考资料

谷歌百度一堆,无法判断原创性,就懒得贴了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值