19:肿瘤检测

19:肿瘤检测

总时间限制: 
1000ms
内存限制: 
65536kB
描述

一张CT扫描的灰度图像可以用一个N*N(0 < N <= 100)的矩阵描述,矩阵上的每个点对应一个灰度值(整数),其取值范围是0-255。我们假设给定的图像中有且只有一个肿瘤。在图上监测肿瘤的方法如下:如果某个点对应的灰度值小于等于50,则这个点在肿瘤上,否则不在肿瘤上。我们把在肿瘤上的点的数目加起来,就得到了肿瘤在图上的面积。任何在肿瘤上的点,如果它是图像的边界或者它的上下左右四个相邻点中至少有一个是非肿瘤上的点,则该点称为肿瘤的边界点。肿瘤的边界点的个数称为肿瘤的周长。现在给定一个图像,要求计算其中的肿瘤的面积和周长。

输入
输入第一行包含一个正整数N(0 < N <= 100),表示图像的大小;接下来N行,每行包含图像的一行。图像的一行用N个整数表示(所有整数大于等于0,小于等于255),两个整数之间用一个空格隔开。
输出
输出只有一行,该行包含两个正整数,分别为给定图像中肿瘤的面积和周长,用一个空格分开。
样例输入
6
99 99 99 99 99 99
99 99 99 50 99 99
99 99 49 49 50 51
99 50 20 25 52 99
40 50 99 99 99 99
99 99 99 99 99 99
样例输出
9 8
来源
计算概论05-模拟考试1
 1 #include<iostream>
 2 using namespace std;
 3 int a[1001][1001];
 4 int now=1;
 5 int m_tot=0;
 6 int z_tot=0;
 7 int ans=0;
 8 int main() 
 9 {
10     int n;
11     cin>>n;
12     for(int i=1;i<=n;i++)
13     {
14         for(int j=1;j<=n;j++)
15         {
16             cin>>a[i][j];
17             if(a[i][j]<=50)
18             {
19                 m_tot++;
20             }
21         }
22     }
23     for(int i=1;i<=n;i++)
24     {
25         for(int j=1;j<=n;j++)
26         {
27             if(a[i][j]<=50&&(i==1||j==1||i==n||j==n||a[i-1][j]>50||a[i+1][j]>50||a[i][j-1]>50||a[i][j+1]>50))
28             {
29                 
30                 z_tot++;
31             }
32         }
33     }
34     cout<<m_tot<<" "<<z_tot;
35     return 0;
36 }

 

内容概要:本文是《目标检测入门指南》系列的第二部分,重点介绍用于图像分类的经典卷积神经网络(CNN)架构及其在目标检测中的基础作用。文章详细讲解了卷积操作的基本原理,并以AlexNet、VGG和ResNet为例,阐述了不同CNN模型的结构特点与创新点,如深层网络设计、小滤波器堆叠和残差连接机制。同时介绍了目标检测常用的评估指标mAP(平均精度均值),解释了其计算方式和意义。此外,文章还回顾了传统的可变形部件模型(DPM),分析其基于根滤波器、部件滤波器和空间形变代价的检测机制,并指出DPM可通过展开推理过程转化为等效的CNN结构。最后,介绍了Overfeat模型,作为首个将分类、定位与检测统一于CNN框架的先驱工作,展示了如何通过滑动窗口进行多尺度分类并结合回归器预测边界框。; 适合人群:具备一定计算机视觉和深度学习基础,从事或学习图像识别、目标检测相关方向的研发人员与学生;适合希望理解经典CNN模型演进及目标检测早期发展脉络的技术爱好者。; 使用场景及目标:①理解CNN在图像分类中的核心架构演变及其对后续目标检测模型的影响;②掌握mAP等关键评估指标的含义与计算方法;③了解DPM与Overfeat的设计思想,为深入学习R-CNN系列等现代检测器打下理论基础。; 阅读建议:此资源以综述形式串联多个经典模型,建议结合原文图表与参考文献进行延伸阅读,并通过复现典型模型结构加深对卷积、池化、残差连接等操作的理解,从而建立从传统方法到深度学习的完整认知链条。
【源码免费下载链接】:https://renmaiwang.cn/s/3ahez lang 使用为VS Code提供C / C ++语言IDE功能: 该语言环境支持识别并处理编译过程中产生的各种错误与提示,并能有效管理代码的格式化与重构优化。 项目依赖于一个称为clangd的语言服务,用于跨引用管理。 特别是对于复杂的C/C++代码开发,此工具能够提供强大的帮助。 为了使用该扩展功能,请确保在PATH环境中已安装clangd语服务(可在x86-64 Linux、Windows或MacOS系统上自动配置)。 如果已有旧版本的clangd服务,则可通过控制面板检查是否需要升级。 需要注意的是,项目设置基于clang C++编译器,并支持处理复杂的C/C++代码结构。 然而,用户必须明确指定项目构建时使用的编译标志(例如在使用CMake等工具构建时,可通过设置-DCMAKE_EXPORT_COMPILE_COMMANDS=1来实现)。 该服务要求用户指定项目构建时使用的编译标志。 通常情况下,可以将此配置选项包含在源代码的顶部位置,并选择合适的存储方式(如符号链接或直接复制到目标目录中)。 它应位于项目的根目录下:作为符号链接或直接放置在此处即可。 特征代码完成工具能够实时反馈开发过程中可能存在的问题。 在您输入项目名时,该工具会自动检测并报告潜在的编译错误与提示信息,并提供相应的解决方案建议。 这种智能化的支持能够让开发过程更加高效和便捷。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值