洛谷 P3387 tarjan缩点(模板题)

本文分享了一次使用Tarjan算法求解强连通分量,并结合SPFA算法进行最短路径计算的经验。通过实际编码过程中的调试经历,总结了解决方案,包括如何正确实现Tarjan算法以及SPFA算法的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本人第一次做tarjan,这类水题花了2:30小时才调好,一是因为刚转c++不习惯,总会把==打成=,找了好久的错。然后接着一直40分,是发现,now=next(now)打在了括号的外面,真的是蒟蒻。

好了进入正题了。这题我觉得是tarjan缩点然后再将不再一个强联通分量中的点重新连边,然后直接spfa遍历(按理来说floyd直接各个强联通分量3方爆扫好像也是可以的)。这是我的解法。之前还有很多dalao的解法,好像很多用的都是dp,但是我没有想到。。。。

{详细解释请见代码中的注释}

#include<vector>
#include<cstdio>
#include<cstring>
#define MAXN (1000001)  {我觉得这个一个好习惯,因为这可以防止因为手贱而导致的mle或空间开小了}
#define ll long long
#define INF (0x7f7f7f7f)
#define max(a,b) (((a)>(b)) ? (a):(b))
#define min(a,b) (((a)>(b)) ? (b):(a)){手打的max,min要比cmath中的会快}
using namespace std;
int q[MAXN],dis[MAXN];
int get[MAXN];
int top,size,len,k,dc,maxx;
int a[MAXN],head[MAXN],next[MAXN],color[MAXN],dfn[MAXN],low[MAXN],stack[MAXN],f[MAXN],x1[MAXN],y1[MAXN],rd[MAXN];
bool visit[MAXN],instack[MAXN],vis[MAXN];
void add(int x,int y ){
    ++top;
    get[top]=y;
    next[top]=head[x];
    head[x]=top;      {邻接表不用多说}
}
void SPFA(int x){
    memset(vis,0,sizeof(vis));
    memset(dis,0,sizeof(dis));
    int h=0,t=1;     {刚开始将起点进队开始更新}
    q[1]=x; dis[x]=f[x];{因为是点的遍历,所以刚开始要把自己到自己的权值设成点权,不然后面就会少一个起点的值}
    while (h<t){
        ++h;
        int x=q[h];
        vis[x]=0;   {因为已经弹出所以标记为不在队列中}
        int now=head[x];
        while (now>0){
            int g=get[now];
            if (dis[x]+f[g]>dis[g]) {
                dis[g]=dis[x]+f[g];
                if (not vis[g]) {  {如果不在队列中那么进队}
                    t++;
                    q[t]=g;
                    vis[g]=1;
                }
            }
            now=next[now];
        }
    }
    for (int i=1;i<=dc;++i)
    maxx=max(maxx,dis[i]);   {用当前几点到所有点的距离更新答案maxx值}
}
void tarjan(int x){
    ++k; int u=x;
    dfn[x]=low[x]=k; visit[x]=true; instack[x]=true;++top; stack[top]=x;
    int now=head[x];
    do {
        int v=get[now];
        if (visit[v]==0) {
            tarjan(v);    {如果目标点不在栈中那么继续往下搜}
            low[u]=min(low[u],low[v]);    {用你儿子的low值去更新你的low值,因为你的low值必定要小于等于你儿子的low值}
        } else
        if (instack[v]) low[u]=min(dfn[v],low[u]);{如果目标点已经在栈中了,那么你就可以直接用你儿子的dfn值也就是时间戳来更新你的low值}
        now=next[now];{邻接表便利}
    } while(now>0); 
    if (dfn[x]==low[x]) {   {如果满足条件,就说明找到了一个强联通分量,那么就开始弹栈,直到弹到当前这一个点为止}
        ++dc;
        while (stack[top+1]!=x){   {因为当前这一个点也要弹出,所以是top+1,不然的话就会少弹一个}
            color[stack[top]]=dc;{染色}
            f[dc]+=a[stack[top]];{统计每一个颜色的点的总权值}
            instack[stack[top]]=0;{弹栈}
            top--;        {将栈顶指针-1}
        }
    }
}
int main(){
    int n,m;
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;++i) scanf("%d",&a[i]);
    for (int i=1;i<=m;++i){
        int x,y;
        scanf("%d%d",&x1[i],&y1[i]);   
        add(x1[i],y1[i]);
    }    
    top=0;
    for (int i=1;i<=n;++i)if (not visit[i]) tarjan(i);
    memset(head,0,sizeof(head));
    memset(next,0,sizeof(next));
    memset(get,0,sizeof(get));
    top=0;
    for (int i=1;i<=m;++i) 
        if (color[x1[i]]!=color[y1[i]]) {    {如果这条边的两个点不在同一个强联通分量中,那么连边}
            add(color[x1[i]],color[y1[i]]);  {连}
            rd[color[y1[i]]]++;     {将目标点的rd+1,以便后面处理}
            }
    for (int i=1;i<=dc;++i){
if (rd[i]==0) {因为rd不为0的点肯定会被别的点走到,所以只需要便利rd为0的边,可以节省时间} SPFA(i);

}
printf("%d",maxx);  {最后输出便利到的最大值}
}

 

转载于:https://www.cnblogs.com/Dilemma/p/9304363.html

<think>好的,我现在需要处理用户的问题,他想要找一些类似P3916和P5318的题目,但不要涉及多源BFS和Tarjan算法。首先,我要先回顾一下用户之前提到的这两道题目的特,这样才能更准确地理解他的需求。 P5318是【深基18.例3】查找文献,主要考察邻接表的构建以及基础的DFS和BFS遍历,同时需要对邻接表中的节进行排序,确保访问顺序正确。而P3916是图的遍历,需要反向建图并通过遍历找到每个节能到达的最大编号节。这两题的共同是都使用邻接表结构,重在于DFS/BFS的基础应用,可能还涉及一些排序或反向处理的技巧。 用户现在希望找类似的题目,但排除了多源BFS和Tarjan算法。之前的推荐中,P1332涉及多源BFS,P2863使用了Tarjan算法,所以需要排除这些类型的题目,同时保持核心的邻接表和基础遍历的应用。 接下来,我需要回想或者其他OJ上类似的题目。首先,考虑基础遍历的题目,比如需要处理特定遍历顺序、连通性、路径问题等,同时不涉及复杂算法如Tarjan或多源BFS。 可能的候选题目包括: 1. **P1605 迷宫**:虽然题目是迷宫问题,但可以转化为图的遍历,使用邻接表或矩阵,通过DFS/BFS找路径数。不过迷宫通常用二维数组处理,可能不符合邻接表的明确要求,但用户可能需要更直接的图结构题。 2. **P1038 神经网络**:拓扑排序,结合邻接表和BFS,类似P4017,但拓扑排序属于BFS的应用,可能符合条件,但需要确认是否用户认为拓扑排序属于排除范围。用户没明确排除,所以可以考虑。 3. **P1141 01迷宫**:连通块问题,使用BFS/DFS计算每个所属的连通块大小。虽然通常用网格处理,但可以视为图的邻接表结构,每个连接到相邻。不过可能更偏向网格而非显式邻接表,需要判断是否符合用户需求。 4. **P1219 八皇后问题**:虽然是经典回溯,但属于DFS的应用,但可能不涉及邻接表结构,所以不太相关。 5. **P1162 填涂颜色**:同样是网格BFS,处理连通区域,可能不符合邻接表的明确使用。 6. **P1019 单词接龙**:DFS遍历,涉及字符串处理,可能不直接使用邻接表,但可以构建单词之间的邻接关系,可能符合条件。 7. **P1127 词链**:类似单词接龙,欧拉路径问题,可能涉及DFS和邻接表,但需要更复杂的处理,可能属于提高难度。 8. **P1443 马的遍历**:BFS在棋盘上的应用,计算最短步数,但属于网格处理,可能不直接使用邻接表。 9. **P2032 扫描**:滑动窗口,与图论无关,排除。 10. **P2746 [USACO5.3]校园网Network of Schools**:涉及Tarjan算法求强连通分量,已经被用户排除。 可能需要更仔细地寻找。例如,是否有其他题目涉及基础邻接表遍历,如路径问题、连通性、特定顺序遍历等。 另一个方向是查找题单或用户推荐的题目列表,寻找符合条件的问题。比如: - **P2661 信息传递**:求有向图中的最小环,可以使用DFS或并查集,可能需要邻接表,但涉及环检测,可能属于基础遍历的扩展,但不确定用户是否接受。 - **P2921 [USACO08DEC]Trick or Treat on the Farm**:每个节出度为1,求每个出发的路径长度,可以使用DFS记录访问时间或记忆化搜索,属于邻接表遍历的应用,且不涉及复杂算法。 - **P1395 会议**:树的重心问题,通过DFS/BFS计算子树大小,属于树结构的遍历,可能需要邻接表,属于基础应用。 - **P1351 联合权值**:树中距离为2的节对,通过邻接表遍历每个节的邻居,组合计算,属于基础遍历的应用。 此外,用户可能需要更直接的邻接表构建和遍历,例如: - **P1991 无线通讯网**:最小生成树,但可能需要Kruskal或Prim算法,可能不属于基础DFS/BFS。 - **P3371 【模板】单源最短路径(弱化版)**:Dijkstra或SPFA,属于最短路径算法,可能超出基础遍历范围。 回到用户需求,重在于类似P5318和P3916,即明确使用邻接表,进行基础的DFS/BFS,可能涉及排序、反向建图等技巧,但不涉及多源BFS或Tarjan。 可能的合适题目: 1. **P2921 [USACO08DEC]Trick or Treat on the Farm**:每个节只有一个出边,求每个出发的环长度。可以使用DFS遍历每个节,记录访问状态来检测环。需要构建邻接表,每个节一个邻居,适合基础DFS应用。 2. **P2661 信息传递**:同样求最小环,可能需要DFS或BFS来检测环,但属于有向图,每个节一个出边的情况,类似P2921,但更复杂一。 3. **P1395 会议**:树的重心问题,需要遍历树结构计算各子树大小,使用邻接表存储树,属于基础BFS/DFS应用。 4. **P1351 联合权值**:树中节对的联合权值计算,需要遍历每个节的邻居,属于邻接表的应用,虽然问题特殊,但核心是遍历邻居。 5. **P1038 神经网络**:拓扑排序,使用邻接表和BFS进行拓扑排序,属于基础应用,但可能涉及简单的动态规划。 6. **P1807 最长路**:DAG上的最长路径,可以通过拓扑排序+BFS或DFS解决,需要邻接表存储图,属于基础遍历的扩展,但可能符合条件。 需要检查这些题目是否涉及用户排除的多源BFS或Tarjan。例如,P1038的拓扑排序属于BFS的应用,但不涉及多源;P2921和P2661的DFS环检测属于基础遍历。因此,这些题目可能符合用户需求。 总结推荐: - **P2921 [USACO08DEC] Trick or Treat on the Farm**:基础DFS,邻接表存储每个节的单一出边,检测环的长度。 - **P2661 信息传递**:类似,求最小环,DFS/BFS应用。 - **P1395 会议**:树结构遍历,计算重心,邻接表存储树。 - **P1351 联合权值**:遍历邻接表中的邻居节,组合计算权值。 - **P1038 神经网络**:拓扑排序+BFS,邻接表存储有向图,无复杂算法。 需要确保这些题目不涉及用户排除的。例如,P1038中的拓扑排序属于BFS的基础应用,不是多源;P2661的环检测是基础DFS。因此,这些是合适的推荐。 同时,可能需要提供每题的简介和考察,帮助用户理解是否符合他们的需求。例如,强调邻接表的构建、基础遍历的应用,以及可能的排序或反向处理技巧,类似P5318和P3916。</think>以下是结合图论中的邻接表实现 **DFS/BFS** 的练习题推荐,题目风格与 **P5318** 和 **P3916** 类似,不涉及多源 BFS、Tarjan 等复杂算法,专注于邻接表构建与基础遍历的应用: --- ### **一、基础遍历与邻接表操作** 1. **题目编号:P2921 [USACO08DEC] Trick or Treat on the Farm** - **标签**:邻接表、DFS、环检测 - **简介**:每个节有且仅有一条出边,求每个节出发能走的路径长度(最终形成环)。 - **考察**: - 邻接表的构建(每个节一个出边)。 - 通过 DFS 或 BFS 遍历路径,记录已访问节以检测环。 - **关键思路**: - 对每个未访问的节启动遍历,记录路径长度,直到遇到已访问节(形成环或连接已有路径)。 --- 2. **题目编号:P2661 信息传递** - **标签**:邻接表、DFS/BFS、最小环 - **简介**:找到有向图中的最小环(所有节出度为1)。 - **考察**: - 邻接表的构建(类似链式结构)。 - 通过 DFS 标记访问时间戳,检测环并计算长度。 --- ### **二、树结构与遍历应用** 3. **题目编号:P1395 会议** - **标签**:邻接表、树的重心、DFS/BFS - **简介**:在树中找到重心(删除后剩余最大子树最小的节),并计算重心到所有节的距离和。 - **考察**: - 邻接表存储树结构(无向图需双向建边)。 - 两次 DFS/BFS:第一次计算子树大小,第二次计算距离和。 --- 4. **题目编号:P1351 联合权值** - **标签**:邻接表、DFS、组合计算 - **简介**:在无向树中,计算所有距离为2的节对的权值乘积之和与最大值。 - **考察**: - 邻接表遍历每个节的邻居。 - 对每个节的邻居两两组合,避免重复计算。 --- ### **三、拓扑排序与动态规划** 5. **题目编号:P1038 神经网络** - **标签**:邻接表、拓扑排序、BFS - **简介**:根据神经网络的传递规则(带阈值和权重),计算最终活跃的神经元。 - **考察**: - 邻接表存储有向图的边和权重。 - 拓扑排序 + BFS 动态更新节状态。 --- ### **四、路径搜索与条件过滤** 6. **题目编号:P2296 [NOIP2014 提高组] 寻找道路** - **标签**:邻接表、反向建图、BFS - **简介**:找到从起到终的路径,且路径上所有节的邻居都能到达终。 - **考察**: - 反向建图预处理有效节。 - 正向 BFS 搜索最短路径(需结合条件过滤)。 --- ### **五、邻接表遍历模板** **DFS/BFS 核心代码(C++)**: ```cpp vector<int> adj[N]; // 邻接表 bool visited[N]; // DFS 递归模板 void dfs(int u) { visited[u] = true; for (int v : adj[u]) { if (!visited[v]) dfs(v); } } // BFS 队列模板 void bfs(int start) { queue<int> q; q.push(start); visited[start] = true; while (!q.empty()) { int u = q.front(); q.pop(); for (int v : adj[u]) { if (!visited[v]) { visited[v] = true; q.push(v); } } } } ``` --- ### **练习建议** 1. **从简单模型入手**:如 P2921 和 P2661,通过简单的环检测问题熟悉邻接表遍历的细节。 2. **注意树的特性**:树是特殊的无环图,遍历时可利用递归特性(如 P1395 的子树计算)。 3. **灵活应用反向建图**:在需要“逆向思维”的题目中(如 P2296),反向建图能简化条件过滤。 如果需要具体题解或代码实现细节,可以告诉我题号,我会提供更深入的分析!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值