【leetcode】1035. Uncrossed Lines

题目如下:

We write the integers of A and B (in the order they are given) on two separate horizontal lines.

Now, we may draw connecting lines: a straight line connecting two numbers A[i] and B[j] such that:

  • A[i] == B[j];
  • The line we draw does not intersect any other connecting (non-horizontal) line.

Note that a connecting lines cannot intersect even at the endpoints: each number can only belong to one connecting line.

Return the maximum number of connecting lines we can draw in this way.

 

Example 1:

Input: A = [1,4,2], B = [1,2,4]
Output: 2
Explanation: We can draw 2 uncrossed lines as in the diagram.
We cannot draw 3 uncrossed lines, because the line from A[1]=4 to B[2]=4 will intersect the line from A[2]=2 to B[1]=2.

Example 2:

Input: A = [2,5,1,2,5], B = [10,5,2,1,5,2]
Output: 3

Example 3:

Input: A = [1,3,7,1,7,5], B = [1,9,2,5,1]
Output: 2

 

Note:

  1. 1 <= A.length <= 500
  2. 1 <= B.length <= 500
  3. 1 <= A[i], B[i] <= 2000

解题思路:本题可以采用动态规划的方法。记dp[i][j]为A[i]与B[j]连线后可以组成的最多连线的数量,当然这里A[i]与B[j]连线是虚拟的连线,因此存在A[i] != B[j]的情况。首先来看A[i] == B[j],这说明A[i]与B[i]可以连线,显然有dp[i][j] = dp[i-1][j-1]+1;如果是A[i] != B[j],那么分为三种情况dp[i][j] = max(dp[i-1][j-1],dp[i][j-1],dp[i-1][j]),这是因为A[i]不与B[j]连线,但是A[i]可能可以与B[j]之前所有点的连线,同理B[j]也是一样的。

代码如下:

class Solution(object):
    def maxUncrossedLines(self, A, B):
        """
        :type A: List[int]
        :type B: List[int]
        :rtype: int
        """
        dp = []
        for i in range(len(A)):
            dp.append([0] * len(B))

        for i in range(len(A)):
            for j in range(len(B)):
                if A[i] == B[j]:
                    dp[i][j] = max(dp[i][j],1)
                    if i - 1 >= 0 and j - 1 >= 0 :
                        dp[i][j] = max(dp[i][j],dp[i-1][j-1]+1)

                else:
                    if i - 1 >= 0 and j - 1 >= 0:
                        dp[i][j] = max(dp[i][j],dp[i-1][j-1])
                    if j - 1 >= 0:
                        dp[i][j] = max(dp[i][j],dp[i][j-1])
                    if i - 1 >= 0:
                        dp[i][j] = max(dp[i][j],dp[i-1][j])
        return dp[-1][-1]

 

转载于:https://www.cnblogs.com/seyjs/p/10901340.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值