题目如下:
We write the integers of
A
andB
(in the order they are given) on two separate horizontal lines.Now, we may draw connecting lines: a straight line connecting two numbers
A[i]
andB[j]
such that:
A[i] == B[j]
;- The line we draw does not intersect any other connecting (non-horizontal) line.
Note that a connecting lines cannot intersect even at the endpoints: each number can only belong to one connecting line.
Return the maximum number of connecting lines we can draw in this way.
Example 1:
Input: A = [1,4,2], B = [1,2,4] Output: 2 Explanation: We can draw 2 uncrossed lines as in the diagram. We cannot draw 3 uncrossed lines, because the line from A[1]=4 to B[2]=4 will intersect the line from A[2]=2 to B[1]=2.
Example 2:
Input: A = [2,5,1,2,5], B = [10,5,2,1,5,2] Output: 3
Example 3:
Input: A = [1,3,7,1,7,5], B = [1,9,2,5,1] Output: 2
Note:
1 <= A.length <= 500
1 <= B.length <= 500
1 <= A[i], B[i] <= 2000
解题思路:本题可以采用动态规划的方法。记dp[i][j]为A[i]与B[j]连线后可以组成的最多连线的数量,当然这里A[i]与B[j]连线是虚拟的连线,因此存在A[i] != B[j]的情况。首先来看A[i] == B[j],这说明A[i]与B[i]可以连线,显然有dp[i][j] = dp[i-1][j-1]+1;如果是A[i] != B[j],那么分为三种情况dp[i][j] = max(dp[i-1][j-1],dp[i][j-1],dp[i-1][j]),这是因为A[i]不与B[j]连线,但是A[i]可能可以与B[j]之前所有点的连线,同理B[j]也是一样的。
代码如下:
class Solution(object): def maxUncrossedLines(self, A, B): """ :type A: List[int] :type B: List[int] :rtype: int """ dp = [] for i in range(len(A)): dp.append([0] * len(B)) for i in range(len(A)): for j in range(len(B)): if A[i] == B[j]: dp[i][j] = max(dp[i][j],1) if i - 1 >= 0 and j - 1 >= 0 : dp[i][j] = max(dp[i][j],dp[i-1][j-1]+1) else: if i - 1 >= 0 and j - 1 >= 0: dp[i][j] = max(dp[i][j],dp[i-1][j-1]) if j - 1 >= 0: dp[i][j] = max(dp[i][j],dp[i][j-1]) if i - 1 >= 0: dp[i][j] = max(dp[i][j],dp[i-1][j]) return dp[-1][-1]