sgu 104

背包类型的dp

设f(i,j)为 "将编号1...i的鲜花放到花瓶1...j能够得到的最大吸引力"
对于f(i,j),有两种可能性,要么第j个花瓶是空的,要么第j个花瓶放着编号为i的鲜花
于是可以得到转移方程:f(i, j) = max { f(i, j - 1) , f(i - 1, j - 1) + a[i][j] }

 

#include <cstdio>
#include <vector>
#include <cmath>
#include <cassert>
using namespace std;




int F, V;
vector< vector<int> > a;
vector< vector<int> > f;
vector< vector<int> > w;
vector<int> pos;

int directlyPut(int n) {
    int i;
    int ans = 0;
    for (i = 1; i <= n; ++i)
        ans = ans + a[i][i];
    return ans;
}


template <class VVType, class T>
void make2DVector(VVType &a, int d, int f, const T &initValue) {
    int i, j;
    a.resize(d);
    for (i = 0; i < d; ++i) {
        a[i].resize(f);
        for (j = 0; j < f; ++j)
            a[i][j] = initValue;
    }
}


void traceBackAns() {
    pos.resize(F + 1);
    int i = F, j = V;
    while (1) {
        assert(w[i][j] == 0 || w[i][j] == 1);
        if (w[i][j] == 0) {
            j = j - 1;
            continue;
        } else {
            pos[i] = j;
            i = i - 1;
            j = j - 1;
        }

        if (i == 0) break;
    }
}

int dp() {
    int j, i;

    f[1][1] = a[1][1];
    w[1][1] = 1;
    for (j = 2; j <= V; ++j) {
        if (f[1][j-1] >= a[1][j]) {
            f[1][j] = f[1][j-1];
            w[1][j] = 0;
        } else {
            f[1][j] = a[1][j];
            w[1][j] = 1;
        }
    }

    for (i = 2; i <= F; ++i) {
        for (j = i; j <= V; ++j) {
            if (i == j) {
                f[i][j] = directlyPut(j);
                w[i][j] = 1;
            } else {
                if (f[i][j-1] >= f[i-1][j-1] + a[i][j]) {
                    f[i][j] = f[i][j-1];
                    w[i][j] = 0;
                } else {
                    f[i][j] = f[i-1][j-1] + a[i][j];
                    w[i][j] = 1;
                }
            }
        }
    }

    printf("%d\n", f[F][V]);
    traceBackAns();
    for (i = 1; i <= F; ++i) {
        printf("%d", pos[i]);
        if (i != F) printf(" ");
    }
    printf("\n");

}



void input() {
    scanf("%d %d", &F, &V);
    int i, j;
    int tmp;

    make2DVector(a, F + 1, V + 1, 0);
    assert(a.size() == F + 1 && a[0].size() == V + 1);
    for (i = 1; i <= F; ++i) {
        for (j = 1; j <= V; ++j) {
            scanf("%d", &tmp);
            a[i][j] = tmp;
        }
    }

}


int main() {
    int i;
    input();
    make2DVector(f, F + 1, V + 1, 0);
    make2DVector(w, F + 1, V + 1, -1);
    dp();
    return 0;

}

转载于:https://my.oschina.net/mustang/blog/55655

weixin295微信小程序选课系统+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值