codeforces 688D

题意:

给你n和k,表示有n个数,c1到cn,然后让你求一个数x,可以告诉你x%ci的值,问你是否可以唯一确定一个x%k的值

题解:

反证:

假设有两个x1,x2同时是解,则对于所有ci,x1%ci==x2%ci&&x1%k!=x2%k,及(x1-x2)%ci==0&&(x1-x2)%k!=0,

及x1-x2==nlcm(ci)(n属于1到无穷大),所以对于所有的n,nlcm(ci)%k!=0,显而易见所有的nlcm%k!=0的话,则lcm%k!=0,

所以可以得出存在两个解的话,lcm%k!=0

所以我们只要判断lcm%k是否等于零即可

#include<bits/stdc++.h>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define ll long long
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define inf 0x3f3f3f3f
#define INF 0x3f3f3f3f3f3f3f3f
#define pii pair<int,int>
#define pdd pair<double,double>
#define pdi pair<double,int>
#define mp(u,v) make_pair(u,v)
#define sz(a) a.size()
#define ull unsigned long long
#define ll long long
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define db double
const int mod = 1e9+7;
const int maxn = 1e6+5;
const double eps = 1e-6;
using namespace std;
bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==0?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=1;a%=mod; if(b<0) return 1; for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
    ll x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
//inv[1]=1;
//for(int i=2;i<=n;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
int n,k;
ll c[maxn];
bool ok(){
    ll ans = c[1];
    rep(i,2,n+1) ans = lcm(ans,c[i]) % k;
    ans %= k;
    return !ans;
}
int main(){
    scanf("%d%d",&n,&k);
    rep(i,1,n+1) scanf("%lld",&c[i]);
    puts(ok()?"Yes":"No");
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/chinacwj/p/8561343.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值