【数论】乘法逆元

百度百科

Definition&Solution

  在等式乘法中,有,同样在同余问题中,有ax≡1(mod p),其中p∈{素数},则称x为a在mod p域下的逆。

一、单个数求逆元

   对于单个式子逆元的求法,显然可以通过解同余方程

ax≡1(mod p)    ①

   求得,注意p必须为素数,否则a在mod p域下无意义。即:可以使用解①式求得a在mod p域下的逆,但是不能使用其他求逆元的方法求解①式,因为①式不保证p属于{素数}。

 

二、线性求逆元

   证明略。已知1的逆元是1,记inv[i]为i的逆元,有递推式:inv[i]=(-(p/i)*inv[p%i]%p+p)%p。

   以后做数论 开long long! 开long long! 开long long! 开long long! 开long long! 开long long! 开long long!

   即使结果在Int内,乘法处可能溢出。

三、线性求阶乘逆元。

   即求(n!)内所有数字的逆元。时间复杂度O(n!)  即对于每一个数字处理时间为O(1)

   使用方法一求出int[n!],然后有递推式:

   inv[i]=inv[i+1](i+1)。

   证明不会

Examples

1、单个数求逆元

  lg P1082 同余方程

Description

  求关于 xx 的同余方程 ax1(modb) 的最小正整数解。

Input

  一行,包含两个正整数 a,b ,用一个空格隔开。

Output

  一个正整数 x0 ,即最小正整数解。输入数据保证一定有解。

Sample Input

3 10

Sample Output

7

   注意:本题可以在b为素数时求解a的逆,但是在b不为素数时的解不是a的逆元。仅仅是方程ax≡1(Mod b)的解。

Solution

      由ax≡1(Mod b)                ①

      移项可得,ax-1≡0(Mod b)            ②

      根据同余的定义即得,求解②式即为求解不定方程ax-1=by,即求解ax-by=1的x的最小整数解。

      求解后,注意若(a,b)<0,x取相反数,并不断+b成为正数

Code

#include<cstdio> 

long long int a,b,ans;

inline void exgcd(long long int &x,long long int &y,long long int a,long long int b) {
    if(!b) {
        x=1;y=0;ans=a;
        return;
    }
    long long int x1,y1;
    exgcd(x1,y1,b,a%b);
    x=y1;
    y=x1-(a/b)*y1;
    return;
}

int main() {
    scanf("%lld%lld",&a,&b);
    b*=-1;
    long long int x,y;
    exgcd(x,y,a,b);
    b*=-1;
    if(ans<0)    x=-x;
    while(x<=0)    x+=b;
    printf("%lld\n",x);
}

 

2、线性求区间逆元

  lgP3811 【模板】乘法逆元

Description

  给定n,p求1~n中所有整数在模p意义下的乘法逆元。

Input

  一行n,p

Output

   n行,第i行表示i在模p意义下的逆元。

Sample Input

10 13

 

Sample Output

1
7
9
10
8
11
2
5
3
4

 

Hint

   1n≤3*1e6,n<p<20000528

   输入保证 p 为质数。

Solution

  板子题,套用做法2

Code

#include<cstdio>
#define maxn 3000010

inline void qr(long long &x) {
    char ch=getchar();long long f=1;
    while(ch>'9'||ch<'0')    {
        if(ch=='-')    f=-1;
        ch=getchar();
    }
    while(ch>='0'&&ch<='9')    x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
    x*=f;
    return;
}

inline long long max(long long a,long long b) {return a>b?a:b;}
inline long long min(long long a,long long b) {return a<b?a:b;}

inline void swap(long long &a,long long &b) {
    long long c=a;a=b;b=c;return;
}

long long n,a[maxn],p;

void sf() {
    a[1]=1;
    printf("1\n");
    for(long long i=2;i<=n;++i) {
        a[i]=(-(p/i)*a[p%i]%p+p)%p;
        printf("%lld\n",a[i]);
    }
    return;
}

int main() {
    qr(n);qr(p);
    sf();
    return 0;
}

 

Summary

  以后做数论 开long long! 开long long! 开long long! 开long long! 开long long! 开long long! 开long long!

转载于:https://www.cnblogs.com/yifusuyi/p/9134697.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值