Luogu P3170 [CQOI2015]标识设计 状态压缩,轮廓线,插头DP,动态规划

看到题目显然是插头\(dp\),但是\(n\)\(m\)的范围似乎不是很小。我们先不考虑复杂度设一下状态试试:

一共有三个连通分量,我们按照\(1,2,3\)的顺序来表示一下。轮廓线上\(0\)代表没有插头接入,\(x\)说明有第\(x\)个连通分量里的插头接入,需要在这里连下去。

我们设当前格子左边的一位轮廓线为\(b_1\),上边的一位轮廓线为\(b_2\)

  • 如果\(b_1 = b_2 = 0\)

    • 当前格子可以选择不放。

    • 当前格子也可以向下新建一个\(L\)

  • 如果\(b1 = 0\)\(b2 != 0\)

    • 可以连下去。

    • 也可以在这里拐弯向右。

  • 如果\(b1 != 0\)\(b2 = 0\)

    • 可以向右连下去。

    • 也可以就此结束。

连通分量会出现中断的情况。比如你在很靠上的地方选两个\(L\),又在最下面选了一个\(L\),这时候可能会出现中间某些轮廓线上全都是\(0\),遇到第三个分量的时候不好判断。这里我们在第\(m+1\)位上再放一个数,表示目前已经出现几个连通分量,就容易确定状态的可行性了。

状态和决策都很简单。下面我们看一下复杂度靠谱不靠谱。

一般逐格转移的插头\(dp\)复杂度是\(O(NM*\)状态总数上界\()\)。一条轮廓线上最多有三个连通分量接入,所以用\(0,1,2,3\)四个数四进制表示。每个连通分量只可能接入一次(想一想,为什么),那么可以出现连通分量的选择就有\(C_N^3\)种。考虑三种连通分量各自的编号选择,状态总数就有\(C_N^3 * 4^3=259840\)种。运算次数大概是\(2e8\)左右,开着\(O2\)可以轻松卡过去。

(当然不开\(O2\)略微卡常也可以但是我懒=_=

\(Code\)

#include <bits/stdc++.h>
using namespace std;

#define int unsigned long long

const int N = 30 + 5;
const int base = 999983;
const int M = 1000000 + 5;

int n, m, can_use[N][N];

int las, cur, cnt[2], nxt[M];

int head[M]; int dp[2][M], Hash[2][M];

void update (int zt, int val) {
    int _zt = zt % base;
    for (int i = head[_zt]; i; i = nxt[i]) {
        if (Hash[cur][i] == zt) {
            dp[cur][i] += val; return;
        }
    }
    nxt[++cnt[cur]] = head[_zt];
    head[_zt] = cnt[cur];
    Hash[cur][cnt[cur]] = zt;
    dp[cur][cnt[cur]] = val;
}

int get_val (int zt) {
    int _zt = zt % base;
    for (int i = head[_zt]; i; i = nxt[i]) {
        if (Hash[cur][i] == zt) {
            return dp[cur][i];
        }
    }
    return 0;
}

int get_wei (int zt, int wei) {
    return (zt >> (wei * 2)) % 4;
}

int alt_wei (int zt, int wei, int val) {
    return zt - ((get_wei (zt, wei) - val) << (wei * 2));
}

void change_row () {
    for (int i = 1; i <= cnt[cur]; ++i) {
        int &zt = Hash[cur][i];
        for (int k = m; k >= 1; --k) {
            zt = alt_wei (zt, k, get_wei (zt, k - 1));
        }
        zt = alt_wei (zt, 0, 0);
    }
}

void print_zt (int zt) {
    for (int k = 0; k<= m + 1; ++k) {
        cout << get_wei (zt, k) << " ";
    }   
}

void print (int x, int y) {
    cout << "r = " << x << " c = " << y << endl;
    for (int i = 1; i <= cnt[cur]; ++i) {
        cout << "zt = ";
        print_zt (Hash[cur][i]);
        cout << "dp = " << dp[cur][i] << endl;
    } 
}

int solve () {
    update (0, 1);
//  print (0, 0);
    for (int i = 1; i <= n; ++i) {
        change_row ();
        for (int j = 1; j <= m; ++j) {
            las = cur, cur ^= 1, cnt[cur] = 0;
            memset (head, 0, sizeof (head));
            for (int k = 1; k <= cnt[las]; ++k) {
                int zt = Hash[las][k];
                int b1 = get_wei (zt, j - 1);
                int b2 = get_wei (zt, j - 0);
                int val = dp[las][k];
//              print_zt (zt); cout << endl;
//              cout << "b1 = " << b1 << " b2 = " << b2 << endl;
                if (!can_use[i][j]) {
                    if (!b1 && !b2) {
                        update (zt, val);
                    }
                } else {
                    if (b1 == 0 && b2 == 0) {
                        int b = get_wei (zt, m + 1), _zt = zt;
                        if (b < 3 && can_use[i + 1][j]) {
                            _zt = alt_wei (_zt, m + 1, b + 1); // 新建连通分量 
                            _zt = alt_wei (_zt, j - 1, b + 1); // b1 那一位改为新分量编号 
//                          print_zt (zt); cout << " -> "; print_zt (_zt); cout << endl;
                            update (_zt, val); 
                        }
                        update (zt, val); // 这个格子不占用 
                    }
                    if (b1 == 0 && b2 != 0) {
                        if (can_use[i + 1][j]) {
                            int _zt = zt; 
                            _zt = alt_wei (_zt, j - 1, b2);
                            _zt = alt_wei (_zt, j - 0, 0);
                            // 0_b2 -> b2_0
//                          print_zt (zt); cout << " -> "; print_zt (_zt); cout << endl;
                            update (_zt, val); 
                        } 
                        if (can_use[i][j + 1]) {
                            update (zt, val); 
                            // 0_b2 -> 0_b2
                        }
                    }
                    if (b1 != 0 && b2 == 0) {
                        if (can_use[i][j + 1]) {
                            int _zt = zt;
                            _zt = alt_wei (_zt, j - 1, 0);
                            _zt = alt_wei (_zt, j - 0, b1);
                            // b1_0 -> 0_b1
                            
//                          print_zt (zt); cout << " -> "; print_zt (_zt); cout << endl;
                            update (_zt, val);
                        }
                        int _zt = alt_wei (zt, j - 1, 0); 
                        // b1_0 -> 0_0
//                          print_zt (zt); cout << " -> "; print_zt (_zt); cout << endl;
                        update (_zt, val);
                    }
                }
            } 
//          print (i, j);
        } 
    }
    int fin = alt_wei (0, m + 1, 3);
    return get_val (fin);
} 

signed main () {
//  freopen ("data.in", "r", stdin);
//  freopen ("data.out", "w", stdout);
    cin >> n >> m;
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= m; ++j) {
            int ch = getchar ();
            if (ch != '.' && ch != '#') {
                ch = getchar ();
            } 
            if (ch == '.') can_use[i][j] = true;
//          cout << can_use[i][j] << " ";
        }
//      cout << endl;
    }
    cout << solve () << endl;
}

转载于:https://www.cnblogs.com/maomao9173/p/10838953.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值