信息流短视频时长多目标优化

背景

      信息流短视频排序目前使用的是基于CTR预估Wide&Deep排序模型。在此基础上继续一系列优化,通过引入相关性信号、体感信号、多场景的样本融合、高层排序模型取得了不错收益。

      信息流短视频模型优化可分为两部分优化:

  • 感知相关性优化——点击模型以优化(CTR/CLICK为目标)
  • 真实相关性优化——时长多目标优化(停留时长RDTM/播放完成率PCR

      上述收益均基于点击模型的优化,模型能够很好地捕抓USER-ITEM之间感知相关性,感知权重占比较高,弱化真实相关性,这样可能导致用户兴趣收窄,长尾问题加剧;此外,停留时长,无论是信息流、竞品均作为重要优化目标,Youtube基于时长策略权重占比50%以上。在此前提下,我们排序模型迫切需要引入时长多目标优化,提升推荐的真实相关性,寻求在时长上取得突破。

                              

       时长多目标的引入,排序模型不仅单纯地优化点击目标,同时也要兼顾时长目标,使得排序模型的感知相关性与真实相关性均得到较好的体现;目前业界点击+时长优化有多种方式包括:多目标优化(点击+时长)、联合建模(参考阿里联合预估算法JUMP)等。

       这里我们通过样本rewight方式,相当于点击label不变情况下,时长作为较强的bias去影响时长目标,保证感知相关性前提,去优化真实相关性。目前我们正在调研更加自适应的时长建模方式括(point-wise、list-wise),后续为进一步介绍。上述是时长多目标优化简要介绍,而样本reweight优化取得不错的收益,下面简单介绍下。

RDTM REWEIGHTING

        模型时长多目标样本加权方式,是我们参照weighted logistic regression方法,结合RecSys2016上Youtube提出的时长建模,在模型训练是通过停留时长去对正样本加权,负样本不加权,从而去影响正负样本的权重分布,使得停留时长越长的样本,在时长目标下得到充分训练。

        加权逻辑回归方法在稀疏点击场景下可以很好使得时长逼近与期望值。假设就是weighted logistic regression学到的期望,其中N是样本数量,K是正样本,Ti是停留时长,真实期望就近似逼近E(T)*(1-P),P是点击概率,E(T)是停留时长期望值,在P<<1情况下,真实期望值就逼近E(T),所以,通过加权逻辑回归方式做样本加权,切合我们点击稀疏的场景,通过样本加权方式使得模型学到item停留时长偏序关系。

      样本加权优化方式我们参照Youtube的时长建模,但具体做法上存在以下差异:

  • Youtube以时长为label做优化,而我们还是基于点击label,这样是为了保证模型感知相关性(CTR/CLICK);
  • Youtube是回归问题,通过指数函数拟合时长预测值,而我们则是分类问题,优化损失函数logloss;
  • 停留时长加权方式上我们考虑停留时长与视频本身时长关系,采用多分段函数平滑停留时长和视频本身时长关系,而youtube则是观看时长加权;

      上述差异主要从两个方面考虑:  

  1. 保证CTR稳定的前提下(模型label依然是点击),通过样本reweight去优化时长目标。
  2. 分段函数平滑保证长短视频的下发量严重倾斜,尽可能去减少因为视频长短因素,而模型打分差距较大问题。

                                        

       我们的模型网络结构与youtube差异不大,底层特征做embedding共享,离散归一化。训练是通过引入weighted logistic去优化时长目标,在线预测依然是0/1概率,而在0/1概率跟之前不同是的经过时长bias修正,使得模型排序考虑真实相关性。

离线评估指标

  1. AUC:AUC作为排序模型常用离线评估特别适用是0/1分类问题,目前我们模型label还是点击0/1问题,所以,AUC是一个基础离线指标。但是AUC很难准确地评估模型对于时长优化好坏,因此AUC只是作为模型准入的条件,保证AUC持平/正向情况下,我们需要时长指标衡量模型好坏。
  2. AVG_RDTM: (预测平均停留时长)——每一batch中选取模型打分topk正样本item,取这批停留时长均值作为AVG_RDTM, 通过AVG_RDTM的大小来离线评估模型在时长推荐的好坏。 通过AUC保证推荐感知相关性(CTR), 而AVG_RDTM则是在这批正样本Item内最大化停留时长的评估,在线时长指标趋势与AVG_RDTM趋势一致,涨幅上有diff。

PCR_NORM REWEIGHTING

      一期在停留时长样本加权上取得不错的收益,二期是集中播放完成率上的优化。

      二期优化来源于我们策略review结果,我们发现一大部分高播放完成率的视频,CTR较低,打分靠后,这批item中视频本身时长1min内占比较大。一期我们用时长分段函数来做样本加权,一定程度上平滑了视频本身时长对打分影响,而播放完成率体现用户对单item的注意力,更能反映推荐的真实相关性。短视频时长,播放完成率取得突破对于信息流规模化和口碑打造具有强推进剂作用

      针对以上较短,较长的优质视频打分靠后,下发量不足的问题,我们引入分位数播放完成率来做平滑加权。主要是以下两种方式:

  • 时长目标优化从停留时长加权演变至播放完成率加权,更好的平滑长短视频之间的打分差异,使得模型打分更加注重于真实相关性。
  • 视频时长分段,停留时长完成率分位数归一化+威尔逊置信区间平滑,使得各视频时长段播放完成率相对可比,避免出现打分因视频长度严重倾斜情况。

      此外,较短或较长的视频在播放完成率上有天然的差距,我们按视频本身长度离散,停留时长做分位数处理,归一化长短视频播放完成率上的差异,使得各长度段的视频播放完成率可比。

                                     

                                                     

      时长多目标优化从停留时长升级至PCR_Norm, 全局Item停留时长处在相对可比的状态,尽可能减少视频本身时长对打分影响,使得模型打分更加专注于User-Item真实相关性和视频质量,提升长尾优质的视频Item消费。

      二期Pcr_norm优化基于一期时长加权基础上,离线评估与一期优化类似:AUC与AVG_RDTM,归一化的播放完成率更能反映用户对item的专注度,通过优化单次阅读时长,阅读完成率来提升整体的停留时长消费,拉升大盘指标。

优化收益

      一期+二期离线AUC累积提升6%以上,在线人均时长累积提升10%以上。

结语

       信息流短视频多目标优化目前处于探索阶段,初步探索出短视频多目标优化渐进路线,从样本reweight -> point-wise时长建模 -> list-wise时长建模 -> 多模态联合学习方向。此外,沉淀了一些策略review和数据分析方法论,为后续时长优化提供数据基础。

       虽然现阶段时长多目标优化取得不错收益,但是优化规则性较多,后续我们将逐步转向自适应的时长建模,从point-wise到全局list-wise时长优化,由感知相关性优化转向真实相关性优化,力争在消费时长取得较大突破。而自适应的时长建模及点击目标与时长目标的权衡收益最大化,将是我们面临又一挑战。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
方案是为解决特定问题或达成特定目标而制定的一系列计划或步骤。它的作用是提供一种系统性的方法,以有效地应对挑战、优化流程或实现目标。以下是方案的主要作用: 问题解决: 方案的核心目标是解决问题。通过系统性的规划和执行,方案能够分析问题的根本原因,提供可行的解决方案,并引导实施过程,确保问题得到合理解决。 目标达成: 方案通常与明确的目标相关联,它提供了一种达成这些目标的计划。无论是企业战略、项目管理还是个人发展,方案的制定都有助于明确目标并提供达成目标的路径。 资源优化: 方案在设计时考虑了可用资源,以最大化其效用。通过明智的资源分配,方案可以在有限的资源条件下实现最大的效益,提高效率并减少浪费。 风险管理: 方案通常会对潜在的风险进行评估,并制定相应的风险管理策略。这有助于减轻潜在问题的影响,提高方案的可行性和可持续性。 决策支持: 方案提供了决策者所需的信息和数据,以便做出明智的决策。这种数据驱动的方法有助于减少不确定性,提高决策的准确性。 团队协作: 复杂的问题通常需要多个人的协同努力。方案提供了一个共同的框架,帮助团队成员理解各自的职责和任务,促进协作并确保整个团队朝着共同的目标努力。 监控与评估: 方案通常包括监控和评估的机制,以确保实施的有效性。通过定期的评估,可以及时调整方案,以适应变化的环境或新的挑战。 总体而言,方案的作用在于提供一种有序、有计划的方法,以解决问题、实现目标,并在实施过程中最大化资源利用和风险管理。 方案是为解决特定问题或达成特定目标而制定的一系列计划或步骤。它的作用是提供一种系统性的方法,以有效地应对挑战、优化流程或实现目标。以下是方案的主要作用: 问题解决: 方案的核心目标是解决问题。通过系统性的规划和执行,方案能够分析问题的根本原因,提供可行的解决方案,并引导实施过程,确保问题得到合理解决。 目标达成: 方案通常与明确的目标相关联,它提供了一种达成这些目标的计划。无论是企业战略、项目管理还是个人发展,方案的制定都有助于明确目标并提供达成目标的路径。 资源优化: 方案在设计时考虑了可用资源,以最大化其效用。通过明智的资源分配,方案可以在有限的资源条件下实现最大的效益,提高效率并减少浪费。 风险管理: 方案通常会对潜在的风险进行评估,并制定相应的风险管理策略。这有助于减轻潜在问题的影响,提高方案的可行性和可持续性。 决策支持: 方案提供了决策者所需的信息和数据,以便做出明智的决策。这种数据驱动的方法有助于减少不确定性,提高决策的准确性。 团队协作: 复杂的问题通常需要多个人的协同努力。方案提供了一个共同的框架,帮助团队成员理解各自的职责和任务,促进协作并确保整个团队朝着共同的目标努力。 监控与评估: 方案通常包括监控和评估的机制,以确保实施的有效性。通过定期的评估,可以及时调整方案,以适应变化的环境或新的挑战。 总体而言,方案的作用在于提供一种有序、有计划的方法,以解决问题、实现目标,并在实施过程中最大化资源利用和风险管理。
### 回答1: 基于Lcmv Gsc算法的语音增强仿真是一种通过代码的操作视频展示的方法,用于展示如何使用该算法来提高语音信号的质量和清晰度。 该算法是一种常见的语音增强技术,主要用于在噪声环境下提取出声音源的信号,并抑制噪声干扰。通过该算法,可以有效地提高语音的可理解度和清晰度,提升用户的听觉体验。 在代码操作视频中,通常会包含以下内容: 1. 环境设置:视频开始时,会展示实验环境的设置,包括音频输入输出设备的连接和设置,以及噪声源的选取和放置等。 2. 程序介绍:视频通过代码演示的方式,逐步展示算法的实现过程。首先会介绍Lcmv Gsc算法的原理和流程,并对其实现进行详细说明。 3. 代码演示:视频中会逐行展示代码的编写和操作过程,包括输入参数设置、信号处理和算法调用等。通过代码的展示,观众可以清晰地了解算法的具体实现细节。 4. 效果对比:视频还会播放实际语音增强效果的对比展示,包括原始语音和增强后语音的播放,以及降噪效果和语音清晰度的对比展示。观众可以通过听觉感知来评估算法的效果和性能。 5. 结果分析:视频结束时,会对算法的实验结果进行分析和总结,包括音频采样率、频谱图、信噪比等参数的分析,并对算法优化和改进提出建议。 通过观看这样的操作视频,观众可以全面了解基于Lcmv Gsc算法的语音增强仿真的过程和方法,掌握相关算法的实现和应用技巧,从而更好地理解和应用这项技术。 ### 回答2: 基于最小共轭差矢量(LCMV)广义旁瓣抑制算法(GSC)的语音增强仿真代码操作视频,可以通过以下步骤进行。 首先,打开集成开发环境(IDE)或文本编辑器,创建一个新的代码文件。选择一种编程语言(如MATLAB或Python)作为实现语音增强算法的工具。 接下来,导入所需的库或模块,例如语音处理或信号处理库,以及计算矩阵运算所需的数学库。 然后,定义并加载输入的语音信号。这可以是一个音频文件,或者直接从麦克风或其他音频采集设备中实时获取的实时音频流。 接着,预处理输入信号。这可以包括去除噪声、滤波或降低增益等步骤,以减少背景噪声对增强效果的影响。 然后,实现LCMV GSC算法。该算法基于最小共轭差矢量(Least Constrained Minimum Variance)的思想,通过重构目标信号和抑制噪声。 算法的关键步骤包括:计算输入信号的自相关矩阵、噪声相关矩阵和最小共轭差矢量。根据最小共轭差矢量,计算权重矩阵,以最小化输出信号的方差。 然后,将输入信号经过LCMV GSC算法进行处理,得到增强的语音信号。 最后,将增强后的语音信号进行输出,可以保存为音频文件,或将其实时播放出来。 在代码操作视频中,可以展示如何实现上述步骤,并通过示例音频进行演示。视频可以包括代码演示、参数设置和效果展示等内容,以帮助观众理解和复现基于LCMV GSC算法的语音增强仿真代码操作。 ### 回答3: 基于LCMV-GSC算法的语音增强仿真代码操作视频主要分为以下几个步骤: 1. 准备工作:准备语音增强仿真所需的代码和相关工具。首先从相关平台或者论文中下载LCMV-GSC算法的代码,确保代码库完整并安装相关依赖项,如MATLAB或Python等。 2. 数据准备:准备语音数据用于仿真。可以在网上下载开源语音数据集,或者自行录制一段语音。确保语音数据集包含清晰的人声信号和背景噪声信号。 3. 代码操作演示:打开MATLAB或Python编辑器,并加载LCMV-GSC算法的代码。首先,输入语音数据,并将其预处理,例如分帧、计算功率谱等。然后,根据LCMV-GSC算法的具体实现,设置算法参数,如麦克风个数、滤波器长度、权重设置等。接下来进行语音增强处理,通过LCMV-GSC算法对语音数据进行处理,去除背景噪声并增强人声信号。 4. 结果展示:通过声音播放工具,播放增强后的语音结果。对比原始语音和增强后的语音,评估增强效果。可以通过指标如信噪比(SNR)来量化评估。 5. 总结和讨论:总结整个操作过程,并讨论LCMV-GSC算法在语音增强中的优点和局限性。进一步思考如何改进算法以提高语音增强的效果。 注意事项: - 在操作视频中,需要清晰地展示代码操作过程和结果展示界面。 - 应确保视频内容流畅,语速适中,可加入文本解说以帮助理解。 - 视频中应给出代码的具体路径和版本信息,以便观众能够获取正确的代码并进行复现。 这是一个大致的步骤说明,具体操作视频的内容可根据LCMV-GSC算法的实现细节和要求进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值