Greenplum和Deepgreen性能简单对比

之前做过一个Greenplum和Deepgreen在多个维度的性能对比,数据量比较少,分享给大家供参考~

背景数据:

1.服务器数量:单台Dell R730,普通HDD;

2.数据量:大概有3000万,表大小为10GB左右,查询采用的基础数据为地理信息数据。

3.用户:大家可以看到以下会有两组图片,每组第一个图片用户为gpadmin的是安装的Deepgreen,PG内核为8.2.15,第二个图片用户为gpdb的为Greenplum,PG内核也是8.2.15。

多维时间比较:

1.数据总量统计:

82b580b2d81faa17e08eddb714201550f49.jpg

080737f986696e4626946fb5c7ead7c396c.jpg

2.按照productid分组查询统计

ec1fbc8a4e0c836df258427618f89c35b59.jpg

2f5b25fb0bd7901fddb1479f646729efcc2.jpg

3.排序

5d2cfcb5042f30eecb197ec54856cad962b.jpg

3f3ea22bc4f60e10a6e38ac1db9114605d4.jpg

4.过滤+排序   

55f4afbc962b47108fb4472509ff8ef288e.jpg

b988e8b6f8e95b4345a43f5c92e6de06827.jpg

5.多条件查询

8110d7951b90eeb3858c1c187872da93d3a.jpg

2e2e591a0eaf02a1e24810f644ec77dcd1e.jpg

6.3000万数据copy卸载

a2db369538a1ffc26e5f2b5d988cba6fa41.jpg

4bdc381a22971f4d1508e7134f03fc56a48.jpg

7.3000万数据copy装载

fac10dbc9e934650e159b306cb9c325d648.jpg

cd011463875eb89cd511369fd6db5433560.jpg

8.坐标数据插入测试:

219ef44155629c484a2395d43e249a7b0f1.jpg

cf24eb9c4559d1967c477b3c6f425b46fc4.jpg

9.count坐标点

3125ee255f9ca60832c71cd62206b1828a2.jpg

082b8c082a2aef17b21fa7a9d5523bb2fb6.jpg

10.6000万数据按productid分组查询

59e00c4eb6a6177f58f3b0c0587ee5fa2d5.jpg

bafcc08f438d3ea88dd33d0b3bca7c58566.jpg

11.模拟两个点之间的距离

47337358a028257dca01cfbf4efb1deafe1.jpg

ad8ea747f816064ef6cd7f19cd22c866b04.jpg

12.山东省

773bc3216afc512f97f052c9dcb24b19f17.jpg

3628752058a23e143cf0db7f30d04eaf697.jpg

从整体对比来看,在小数据量的性能对比上,Deepgreen比Greenplum要快,这也是Deepgreen研发团队一直在致力改进的地方。但是Greenplum强大的生态也是其发展的优势所在,本文测试场景有限,测试结尾限于场景比较片面且谨代表个人观点,如有问题可留言讨论~

转载于:https://my.oschina.net/javacy/blog/2996722

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值