(算是dp吧) 小茗的魔法阵 (fzu 2225)

 

 Problem Description

在打败了易基•普罗布朗、诺姆•普罗布朗之后,小茗同学开始挑战哈德•普罗布朗。

一番交战之后,哈德展开了一大波攻击。小茗同学为了抵御攻击,一边放魔法阵一边放魔法阵,然后他也不知道自己一共放了几个魔法阵。回收魔法阵是需要花费时间的,为了抵御下一波攻击,小茗同学需要知道自己共放了几个魔法阵,由于情况紧急,这个任务需要由你来完成。

魔法阵是三角形△的,比如

.............

.x..x....x...

...xxx..x.x..

.......xxxxx.

.............

以上都认为是魔法阵。

(即:三角形三个顶点为(i,j),(i+k,j-k),(i+k,j+k),边上均为’x’。三角形中间的元素没有要求。一个’x’可以同时属于多个魔法阵。单个’x’也算一个魔法阵。)

场地可以认为是一个N×M的矩形,每个位置上为’.’表示没有东西,或’x’表示有魔法阵。

 Input

第一行是一个整数T(T<=10),表示共有T组测试数据。

每组数据的第一行包含两个整数N M(N,M≤1000),表示矩阵大小。

接下来N行 ,每行M个字母为‘.’或者‘x’。

 Output

每组数据输出独占一行,输出格式为”Case #x: y”,x从1开始,表示数据组号,y表示相应的魔法阵的数量。

 Sample Input

1 3 3 .x. xxx ...

 Sample Output

Case #1: 5

 Source

FOJ有奖月赛-2016年4月(校赛热身赛)

 

 

#include <cstdio>
#include <queue>
#include <stack>
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

#define lson 2*root
#define rson 2*root+1
#define met(a,b) (memset(a,b,sizeof(a)))
typedef long long LL;
const LL mod = 1000000007;
const LL INF= 1e9+7;
const int N = 1100;

char s[N][N];
int dp[N][N], dL[N][N], dR[N][N];

///右边,左下,右下记录连续的, 最后再判断能够增加的大三角形,代码还是很容易能看懂的

int main()
{
    int T, iCase=1;
    scanf("%d", &T);
    while(T--)
    {
        int i, j, k, n, m, cnt=0;

        scanf("%d%d", &n, &m);

        met(s, 0);
        met(dp, 0);
        met(dL, 0);
        met(dR, 0);

        for(i=1; i<=n; i++)
        {
            scanf("%s", s[i]+1);
            for(j=1; j<=m; j++)
            {
                if(s[i][j]=='x')
                {
                    cnt++;
                    dp[i][j] = dL[i][j] = dR[i][j] = 1;
                }
            }
        }

        for(i=n; i>=1; i--)
        for(j=m; j>=1; j--)
        {
            if(dp[i][j])
                dp[i][j] += dp[i][j+1];
            if(dL[i][j])
                dL[i][j] += dL[i+1][j-1];
            if(dR[i][j])
                dR[i][j] += dR[i+1][j+1];
        }

        for(i=1; i<=n; i++)
        for(j=1; j<=m; j++)
        {
            for(k=1; k<=min(dL[i][j], dR[i][j]); k++)
            {
                if(dp[i+k][j-k]>=2*k+1)
                    cnt++;
            }
        }

        printf("Case #%d: %d\n", iCase++, cnt);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/YY56/p/5504461.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值