hdu1052(田忌赛马 贪心)

好坑的一道题,不过确实是贪心的一道好题,想了好久一直无法解决平局的情况。  参考了别人的思路,然后结合了自己的想法,总算是想出来了。

这题有些步骤是必须要执行的,有四个步骤

一、当期状态田忌的最慢的马比对手最慢的马快,那么就直接比赢了这一盘,因为对手最慢的马比田忌所有马都慢,田忌为了后面的情况最优就用最小的代价来赢得这一个必胜的局。 二、当前状态田忌最慢的马比对手最慢的马慢,说明田忌最慢的马比对手所有的马慢,对于这个必败的情况田忌自然会用这匹马去耗对手最快的马,所以这局用最慢的马去和对手最快的马比。  

三、同理,当前状态田忌最快的马比对手最快的马快,则比这盘  

四、同理,当前状态田忌最快的马比对手最快的马慢,则用田忌最慢的马来耗队友最快的马。 因为对手最快的马怎么都要赢,所以要尽量减少损失。

也就是只要出现了这四种情况的其中一种,则必按上述步骤执行。但是还有一种情况,那就上述四种情况突然出现了两种,那么到底先执行哪一种呢? 仔细想下就可以发现,先执行那一种情况最后的结果是相同的。

最后还可能会出现一种死局,那就是两头都相等的时候,这时候你可以假设一下用田忌最慢的马去和对手最快的马比,会出现两种情况,一种是对手最快的马比田忌最慢的马快,但是田忌最快的马也比对手最慢的马快, 所以最坏情况田忌也可以使得除去最快最慢的马剩下来的马,与对手除去最快和最慢剩余下来的马,继续比较,这与两边都比成平局或者一边平局所到达情况相同。 第二种,是当前状态所有的马速度相同,这样任何一种策略得出的结果都是相同的。

按照这种思路,这题就可以解了。

hdu1052

 

 

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <string>
#include <queue>
#include <stdlib.h>
using namespace std;
#define N 1100

int ga[N],gt[N];


int main()
{
    int n;
    while(scanf("%d",&n)&&n)
    {
        for(int i=0;i<n;i++)
            scanf("%d",gt+i);
        for(int i=0;i<n;i++)
            scanf("%d",ga+i);
        sort(ga,ga+n);
        sort(gt,gt+n);
        int ans=0;
        int ab,ad,tb,td;
        ab=0,ad=n-1; tb=0,td=n-1;
        int sign=0;
        while(1)
        {
            if(sign==0)
            {
                if(gt[tb]>ga[ab])
                {
                    ans++;
                    tb++; ab++;
                    if(tb>td) break;
                }
                else if(gt[tb]<ga[ab])
                {
                    if(ga[ad]>gt[tb]) ans--;
                    tb++; ad--;
                    if(tb>td) break;
                }
                else
                {
                    if(ga[ad]==gt[td])
                    {
                        if(ga[ad]>gt[tb]) ans--;
                        tb++;ad--;
                        if(tb>td) break;
                    }
                    else
                    {
                        sign=1; //否者交换方式
                    }
                }
            }
            else
            {
                if(gt[td]>ga[ad])
                {
                    ans++;
                    td--;ad--;
                    if(tb>td) break;
                }
                else if(gt[td]<ga[ad])
                {
                    ans--;
                    tb++; ad--;
                    if(tb>td) break;
                }
                else
                {
                    if(ga[ab]==gt[tb])
                    {
                        if(ga[ad]>gt[tb]) ans--;
                        tb++; ad--;
                        if(tb>td) break;
                    }
                    else
                    {
                        sign=0;
                    }
                }
            }
        }
        printf("%d\n",ans*200);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值