[清华集训2016]石家庄的工人阶级队伍比较坚强——三进制FWT

题目链接:

[清华集训2016]石家庄的工人阶级队伍比较坚强

题目大意:有$n=3^m$个人玩石头剪刀布,共$t$轮游戏,每轮每个人要和包括自己的所有人各进行$m$次石头剪刀布。每个人在$m$轮中的决策固定,即为这个人编号的长度为$m$的三进制(其中$0$表示剪刀、$1$表示石头、$2$表示布,不足$m$位用$0$补齐)。每个人有一个初始分数$f_{0,x}$,给出一个分数矩阵$b$,其中$b_{i,j}$表示赢了$i$局输了$j$局的得分,在第$i$轮结束后,第$x$个人的分数为$f_{i,x}=\sum\limits_{0\le y\le n}{ }f_{i-1,y}b_{u,v}$。其中$b_{u,v}$表示$x$与$y$石头剪刀布,$x$赢了$u$次,输了$v$次的得分。求$t$轮后每个人的得分。

首先因为每个人的决策是固定的,所以转移关系也是恒定的,我们设它是一个矩阵$B$,其中$B_{i,j}$表示$i$与$j$游戏时$i$获得的分数。那么要求的就是$f_{n}=f_{0}B^n$。
我们定义三进制不进位加法为$\oplus$,不退位减法为$\ominus$,他们互为逆运算(与二进制下的异或类似)。
那么对于$\forall k<3^m,B_{i,j}=B_{i\oplus k,j\oplus k}$,同理$B_{i,j}=B_{i\ominus j,0}$。而这个结论也可以推广到$B^n$,即$\forall k<3^m,B_{i,j}^{n}=b_{i\ominus j,0}^{n}$。
那么$f_{n,i}=\sum\limits_{k=0}^{3^m-1}f_{0,k}B_{k,i}^n=\sum\limits_{k=0}^{3^m-1}f_{0,k}B_{0,i\ominus k}^n=\sum\limits_{x\oplus y=i}f_{0,x}B_{0,y}^n$
所以,我们只需要$B$矩阵的第一行就够了,又因为
$B_{0,i}^n=\sum\limits_{k=0}^{3^m-1}B_{0,k}^{n-1}B_{k,i}=\sum\limits_{k=0}^{3^m-1}B_{0,k}^{n-1}B_{0,i\ominus k}=\sum\limits_{x\oplus y=i}B_{0,x}^{n-1}B_{0,y}$
所以只需要将$B_{0}$做$n$次卷积然后和$f_{0}$做一次卷积即可得到答案。
也就是说我们需要找到一个三进制不进位加法卷积,这种模意义下的卷积也叫循环卷积。
其实在我们熟悉的卷积中就有类似的存在——FWT的异或卷积
可以发现FWT异或卷积实际上就是二进制不进位加法卷积。
我们先来研究一下FWT异或卷积:
设$bitcount(i)$表示$i$二进制中$1$的个数。
因为$bitcount(i\&k)$的奇偶性异或$bitcount(j\&k)$的奇偶性等于$bitcount((i\oplus j)\&k)$的奇偶性
那么我们就可以构造出正变换$F(k)=\sum(-1)^{bitcount(i\&k)}f(i)$
可以发现上述式子中的$bitcount(i)$也就是$i$的二进制每一位数的和,而$\&$就是二进制下的不进位乘法、$\oplus$是二进制下不进位加法
那么我们同样可以将这些扩展到三进制中,即$bitcount_{3}(i)$表示$i$的三进制每一位数的和、$\&_{3}$表示三进制下的不进位乘法、$\oplus_{3}$表示三进制下的不进位加法
而上述结论在三进制下也依旧成立
即$(bitcount_{3}(i\&_{3}k)\%3)\oplus_{3}(bitcount_{3}(i\&_{3}k)\%3)=bitcount((i\oplus_{3}j)\&_{3}k)$
那么现在只需要找到一个能代替上式中$-1$的数就能完成这个三进制不进位加法卷积了,而这个数$w$要满足$w^{i}=w^{i\%3}$,所以只要用三次单位根就行了($FWT$中的$-1$也就是二次单位根)!
这里为了方便可以将所有复数都表示成$a+bw$,因为$w^2+w+1=0$,所以$w^2=-w-1$。
对于两个复数相乘就是$(a+bw)*(c+dw)=ac+(bc+ad)w+bd(-w-1)=(ac-bd)+(ad+bc-bd)w$
因为最后要乘上$3^m$的逆元,所以要求$3^m$与$p$互质。
假设$p$有$3$这个质因子且$k=\frac{p}{3}$,那么$\frac{1}{k+1}+\frac{1}{k(k+1)}=\frac{1}{k}=\frac{3}{p}$,与题面矛盾,因此保证了$3^m$有逆元。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define ull unsigned long long
using namespace std;
int n,m,t,mod;
int a[20][20];
int x[600010];
int y[600010];
struct miku
{
	int x,y;
	miku(){}
	miku(int X,int Y){x=X,y=Y;}
	miku s(){return miku((mod-y)%mod,(x-y+mod)%mod);}
	miku t(){return miku((y-x+mod)%mod,(mod-x)%mod);}
	miku operator +(const miku &res){return miku((x+res.x)%mod,(y+res.y)%mod);}
	miku operator -(const miku &res){return miku((x-res.x+mod)%mod,(y-res.y+mod)%mod);}
	miku operator *(const miku &res){return miku((1ll*x*res.x%mod-1ll*y*res.y%mod+mod)%mod,(1ll*x*res.y%mod+1ll*y*res.x%mod-1ll*y*res.y%mod+mod)%mod);}
}f[600010],g[600010];
miku quick_pow(miku x,int y)
{
	miku res=miku(1,0);
	while(y)
	{
		if(y&1)
		{
			res=res*x;
		}
		y>>=1;
		x=x*x;
	}
	return res;
}
void exgcd(int a,int b,int &x,int &y)
{
	if(!b)
	{
		x=1,y=0;
	}
	else
	{
		exgcd(b,a%b,y,x);
		y-=a/b*x;
	}
}
int get_inv()
{
	int x,y;
	exgcd(n,mod,x,y);
	return x=(x%mod+mod)%mod;
}
void FWT(miku *a)
{
	for(int i=1;i<n;i*=3)
	{
		for(int l=i*3,j=0;j<n;j+=l)
		{
			for(int k=0;k<i;k++)
			{
				miku t[3]={a[j+k],a[j+k+i],a[j+k+i+i]};
				a[j+k]=t[0]+t[1]+t[2];
				a[j+k+i]=t[0]+t[1].s()+t[2].t();
				a[j+k+i+i]=t[0]+t[1].t()+t[2].s();
			}
		}
	}
}
void IFWT(miku *a)
{
	for(int i=1;i<n;i*=3)
	{
		for(int l=i*3,j=0;j<n;j+=l)
		{
			for(int k=0;k<i;k++)
			{
				miku t[3]={a[j+k],a[j+k+i],a[j+k+i+i]};
				a[j+k]=t[0]+t[1]+t[2];
				a[j+k+i]=t[0]+t[1].t()+t[2].s();
				a[j+k+i+i]=t[0]+t[1].s()+t[2].t();
			}
		}
	}
	int inv=get_inv();
	for(int i=0;i<n;i++)
	{
		a[i].x=1ll*a[i].x*inv%mod;
	}
}
int main()
{
	scanf("%d%d%d",&m,&t,&mod);
	n=1;
	for(int i=1;i<=m;i++)
	{
		n*=3;
	}
	for(int i=0;i<n;i++)
	{
		scanf("%d",&f[i].x);
		x[i]=x[i/3]+(i%3==1);
		y[i]=y[i/3]+(i%3==2);
	}
	for(int i=0;i<=m;i++)
	{
		for(int j=0;i+j<=m;j++)
		{
			scanf("%d",&a[i][j]);
		}
	}
	for(int i=0;i<n;i++)
	{
		g[i].x=a[x[i]][y[i]];
	}
	FWT(f);
	FWT(g);
	for(int i=0;i<n;i++)
	{
		f[i]=f[i]*quick_pow(g[i],t);
	}
	IFWT(f);
	for(int i=0;i<n;i++)
	{
		printf("%d\n",f[i].x);
	}
}

转载于:https://www.cnblogs.com/Khada-Jhin/p/10272505.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值