算法导论 第四部分——基本数据结构——第15章:动态规划:背包问题

0-1背包问题描述

  有一个窃贼在偷窃一家商店时发现有n件物品,第i件物品价值为vi元,重量为wi,假设vi和wi都为整数。他希望带走的东西越值钱越好,但他的背包中之多只能装下W磅的东西,W为一整数。他应该带走哪几样东西?

0-1背包问题中:每件物品或被带走,或被留下,(需要做出0-1选择)。小偷不能只带走某个物品的一部分或带走两次以上同一个物品。

比较好的介绍博客: 

  http://www.importnew.com/13072.html
  http://blog.csdn.net/wangyuquanliuli/article/details/46628357
  http://www.cnblogs.com/fly1988happy/archive/2011/12/13/2285377.html

0-1背包问题解决方法

  0-1背包问题是个典型举办子结构的问题,但是只能采用动态规划来解决,而不能采用贪心算法。因为在0-1背包问题中,在选择是否要把一个物品加到背包中,必须把该物品加进去的子问题的解与

不取该物品的子问题的解进行比较。这种方式形成的问题导致了许多重叠子问题,满足动态规划的特征。动态规划解决0-1背包问题步骤如下:

0-1背包问题子结构:选择一个给定物品i,则需要比较选择i的形成的子问题的最优解与不选择i的子问题的最优解。分成两个子问题,进行选择比较,选择最优的。

0-1背包问题递归过程:设有n个物品,背包的重量为w,C[i][w]为最优解。即:

                                       

实现代码如下: 空间复杂度还可以简化为 v+1 而不是原来的(n+1)*(v+1) 。因为每次计算其实所需要的数据都是上一组数组,所以不需要记住前面的很多组数。

#include <iostream>
#include <vector>
using namespace std;
const int MIN=0x80000000;
const int N=3;   //物品数量
const int V=5;  //背包容量
int f[N+1][V+1];

int Package(int *W,int *C,int N,int V);
void main(int argc,char *argv[])
{
 int W[4]={0,7,5,8};      //物品权重
 int C[4]={0,2,3,4};      //物品大小
 int result=Package(W,C,N,V);
 if(result>0)
 {
  cout<<endl;
  cout<<"the opt value:"<<result<<endl;
  int i=N,j=V;
  while(i)
  {
   if(f[i][j]==(f[i-1][j-C[i]]+W[i]))
   {
    cout<<i<<":"<<"w="<<W[i]<<",c="<<C[i]<<endl;
    j-=C[i];
   }
   i--;
  }
 }
 else
  cout<<"can not find the opt value"<<endl;
 return;
}

int Package(int *W,int *C,int N,int V)
{
 int i,j;
 memset(f,0,sizeof(f));  //初始化为0

 for(i=0;i<=N;i++)
 for(j=1;j<=V;j++)               //此步骤是解决是否恰好满足背包容量,
  f[i][j]=MIN;                //若“恰好”满足背包容量,即正好装满背包,则加上此步骤,若不需要“恰好”,则初始化为0
    
 for(i=1;i<=N;i++)
  for(j=C[i];j<=V;j++)
  {
   f[i][j]=(f[i-1][j]>f[i-1][j-C[i]]+W[i])?f[i-1][j]:(f[i-1][j-C[i]]+W[i]);
   cout<<"f["<<i<<"]["<<j<<"]="<<f[i][j]<<endl;
  }
 return f[N][V];
}

 

转载于:https://www.cnblogs.com/NeilZhang/p/5671399.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值