绝密★启用前
正弦定理练习题
第I卷(选择题)
请点击修改第I卷的文字说明 6.在△ABC中,若sinAsinB,则A与B的大小关系为( )
A. AB B. AB C. A≥B D.不能确定
7.已知A,B,C是ABC的三个内角,则下列各式中化简结果一定是0的是( )
A.sin(AB)sinC B.tan(AB)tanC
C.sin(AB)cos(C)tanC D.cos[2(BC)]cos2A
一、选择题8.已知△ABC中,tanA
5
12
,则cosA( ) 1.在ABC中,内角A,B,C所对应的边分别为a,b,c,,若3a2b,则
A、122sin2Bsin2A
13 B、513 C、51213 D、13
sin2
A
的值为( ) 9.在ABC中,角A.B.C所对的边分别是a.b.c,
若a1
2
b,A2B,A.
1则cosB等于( )
9 B.173 C.1 D.2
A.13 B.14 C.15 D.12.(2013•天津)在△
ABC中,,则sin∠BAC=
6
(
) 10.在ABC中,若A60,BC4,AC42,则角B的大小为( )A.
B.
C.
D.
A.30° B.45° C
.
135°
D.45°或135° 3.在△ABC中,已知ab=2,B=45°,则角A=( )
A.30或150 B.60或120 C.60 D.30
4.在ABC中,若sinA:sinB:sinC3:4:5,则cosA的值为
A、
35 B、4
5
C、0 D、1 5.在△ABC中,a2,A30, C135,则边c
A.1 B.2 C..第1页 共4页 ◎ 第2页 共4页
第II卷(非选择题)
请点击修改第II卷的文字说明
15.( 12分)在△ABC中,sinA+cosA=求① tanA的值 ; ② △ABC的面积. 2
,AC=2,AB=3, 2
二、填空题
11.在ABC中,A
60,b4,a则ABC的面积等于___ __. 12.在ABC中,角A,B,C所对应的边分别为a,b,c.已知
bcosCccoBs,则
b2a
=________. 16.(本题12分)在△ABC中,ab10,cosC是方程2x2
b
3x20的
13.[2014·北京西城区期末]在△ABC中,三个内角A,B,C的对边分别为一个根,求①角C的度数②△ABC周长的最小值。
a,b,c.若bB=
4
,tanC=2,则c=________. 三、解答题
14.在ΔABC中,角A,B,C的对应边分别为a,b,c,且sinB3
5
,b2. (1)当A=30°时,求a的值;
(2)当a=2,且△ABC的面积为3时,求△ABC 的周长.
第3页 共4页 ◎ 第4页 共4页
参考答案
1.D 【解析】
2sin2Bsin2A2b2a2b2
2()1,又3a2b,所以试题分析:由正弦定理得:22
sinAaa2sin2Bsin2A97
21.选D. 2
sinA42
考点:正弦定理 2.C
【解析】∵∠ABC=
2
,AB=
2
2
,BC=3,
∴由余弦定理得:AC=AB+BC﹣2AB•BC•cos∠ABC=2+9﹣6=5, ∴AC=, 则由正弦定理故选C 3.B 【解析】
试题分析:由正弦定理:
=
得:sin∠BAC=
=
.
ab1
,将已知条件代入可得sinA,在ABC中,sinAsinB2
所以A为60或120
考点:正弦定理,特殊角的三角函数. 4.B 【解析】
试题分析:由正弦定理可知a:b:csinA:sinB:sinC3:4:5,ABC是直角三角
形,C90
cosA
b4. c5
考点:正弦定理、余弦定理 5.C 【解析】
试题分析:由正弦定理,考点:正弦定理 6.A
【解析】若A.B是锐角,ysinx在(0,
ac2c
c22
sinAsinCsin30sin135
2
)内是增函数,由sinAsinB得A>B.
若B是钝角,sinAsinBsinAsin(B)ABAB
矛盾。故选A 7.C
【解析】sin(AB)sinCsin(AB)sinC2sinC0 当C
2
时,AB
2
,此时tan(AB)tanC0
sin(AB)cos(C)tanCsinCcosCtanCsinCsinC0 cos[2(BC)]cos2Acos[22(BC)]cos2A2cos2A不一定为0
综上可得,故选C 8.D
55
得sinAcosA,两边平方得; 1212
2525144
sin2Acos2A,1cos2Acos2A,即cos2A。又cosA
[1**********]
cosA. 故选D
13
【解析】tanA0,A是钝角,由tan9.B 【解析】
1b
abcb
试题分析:由正弦定理与题中条件可得即sinAsinBsinCsin2BsinB
11sinBsin2B2sinBcosB,而B为三角形的内角,所以sinB0,所以cosB,24
故选B.
考点:1.正弦定理;2.正弦的二倍角公式. 10.B
【解析】由正弦定理有
BCACAC
,则sinB,所以sinAsinAsinBBC22B45或B135。当B135时,AB195180,不符,所以B45,故选B
11
.【解析】
2
试题分析:由余弦定理得:1216c4cc2.
所以S
1
bcsinA 2
考点:解三角形. 12.2. 【解析】 试题分析:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB, 即sin(B+C)=2sinB, ∵sin(B+C)=sinA,
13.【解析】∵tanC=2,∴
sinC22
=2,又sinC+cosC=1, cosC
∴sinC=
2
4bcsinC,∴sinC
=由正弦定理,得=.∴c=×b= 5sinBsinCsinB5
14.(1)【解析】
556(2) 39
3
,b2,A=30°, 5
12
babsinA5. 4分 ∴由正弦定理,得a
3sinBsinAsinB35
3
(2)在ΔABC中,∵sinB,b2,a=2,且SABC3,
5
11
∴SABCabsinC22sinC2sinC3,
222
∴sinC, 7分
3
22
bsinCbc20, 9分 又由正弦定理,得c
3sinBsinCsinB95
2056∴△ABC 的周长为abc22. 10分 99
试题分析:(1)在ΔABC中,∵sinB
考点:解三角形
点评:解三角形的题目主要是应用正余弦定理实现边与角的联系,本题还涉及到面积公式:
S
111
absinCbcsinAacsinB 222
15.解:①∵sinA+cosA=2cos(A-45°)=
2
, 2
∴cos(A-45°)=
1
.………2分 2
又0°
∴tanA=tan(45°+60°)=
131=-2-.………6分
② sinA=sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=
26
.…9分 4
∴SABC=
11263AC·AbsinA=·2·3·=(2+).……… 12分 2244
(此题还有其它解法,类似给分)
【解析】略
2
16.解:①2x3x20 x12,x2
2
1
……2分 2
又cosC是方程2x3x20的一个根
cosC
1
,在△ABC中∴C = 120度…6分 2
2
2
2
② 由余弦定理可得:cab2ab
2
12
abab 2
即:c2100a10aa575……8分 当a5时,c最小且c
7553 此时abc1053……10分
△ABC周长的最小值为105……12分
【解析】略