正弦定理c语言,正弦定理练习题

这篇练习题集主要围绕正弦定理展开,涵盖了多个与三角形相关的数学问题,包括角度大小比较、三角函数化简、边长计算及三角形面积的求解。题目涉及了三角形内角和外角的关系、正弦定理的应用、余弦定理的运用,以及特殊角的三角函数值等基础知识。解答过程中需灵活运用正弦定理和余弦定理,结合三角函数的性质进行求解。
摘要由CSDN通过智能技术生成

绝密★启用前

正弦定理练习题

第I卷(选择题)

请点击修改第I卷的文字说明 6.在△ABC中,若sinAsinB,则A与B的大小关系为( )

A. AB B. AB C. A≥B D.不能确定

7.已知A,B,C是ABC的三个内角,则下列各式中化简结果一定是0的是( )

A.sin(AB)sinC B.tan(AB)tanC

C.sin(AB)cos(C)tanC D.cos[2(BC)]cos2A

一、选择题8.已知△ABC中,tanA

5

12

,则cosA( ) 1.在ABC中,内角A,B,C所对应的边分别为a,b,c,,若3a2b,则

A、122sin2Bsin2A

13 B、513 C、51213 D、13

sin2

A

的值为( ) 9.在ABC中,角A.B.C所对的边分别是a.b.c,

若a1

2

b,A2B,A.

1则cosB等于( )

9 B.173 C.1 D.2

A.13 B.14 C.15 D.12.(2013•天津)在△

ABC中,,则sin∠BAC=

6

(

) 10.在ABC中,若A60,BC4,AC42,则角B的大小为( )A.

B.

C.

D.

A.30° B.45° C

135°

D.45°或135° 3.在△ABC中,已知ab=2,B=45°,则角A=( )

A.30或150 B.60或120 C.60 D.30

4.在ABC中,若sinA:sinB:sinC3:4:5,则cosA的值为

A、

35 B、4

5

C、0 D、1 5.在△ABC中,a2,A30, C135,则边c

A.1 B.2 C..第1页 共4页 ◎ 第2页 共4页

第II卷(非选择题)

请点击修改第II卷的文字说明

15.( 12分)在△ABC中,sinA+cosA=求① tanA的值 ; ② △ABC的面积. 2

,AC=2,AB=3, 2

二、填空题

11.在ABC中,A

60,b4,a则ABC的面积等于___ __. 12.在ABC中,角A,B,C所对应的边分别为a,b,c.已知

bcosCccoBs,则

b2a

=________. 16.(本题12分)在△ABC中,ab10,cosC是方程2x2

b

3x20的

13.[2014·北京西城区期末]在△ABC中,三个内角A,B,C的对边分别为一个根,求①角C的度数②△ABC周长的最小值。

a,b,c.若bB=

4

,tanC=2,则c=________. 三、解答题

14.在ΔABC中,角A,B,C的对应边分别为a,b,c,且sinB3

5

,b2. (1)当A=30°时,求a的值;

(2)当a=2,且△ABC的面积为3时,求△ABC 的周长.

第3页 共4页 ◎ 第4页 共4页

参考答案

1.D 【解析】

2sin2Bsin2A2b2a2b2

2()1,又3a2b,所以试题分析:由正弦定理得:22

sinAaa2sin2Bsin2A97

21.选D. 2

sinA42

考点:正弦定理 2.C

【解析】∵∠ABC=

2

,AB=

2

2

,BC=3,

∴由余弦定理得:AC=AB+BC﹣2AB•BC•cos∠ABC=2+9﹣6=5, ∴AC=, 则由正弦定理故选C 3.B 【解析】

试题分析:由正弦定理:

=

得:sin∠BAC=

=

ab1

,将已知条件代入可得sinA,在ABC中,sinAsinB2

所以A为60或120

考点:正弦定理,特殊角的三角函数. 4.B 【解析】

试题分析:由正弦定理可知a:b:csinA:sinB:sinC3:4:5,ABC是直角三角

形,C90

cosA

b4. c5

考点:正弦定理、余弦定理 5.C 【解析】

试题分析:由正弦定理,考点:正弦定理 6.A

【解析】若A.B是锐角,ysinx在(0,

ac2c

c22 

sinAsinCsin30sin135

2

)内是增函数,由sinAsinB得A>B.

若B是钝角,sinAsinBsinAsin(B)ABAB

矛盾。故选A 7.C

【解析】sin(AB)sinCsin(AB)sinC2sinC0 当C

2

时,AB

2

,此时tan(AB)tanC0

sin(AB)cos(C)tanCsinCcosCtanCsinCsinC0 cos[2(BC)]cos2Acos[22(BC)]cos2A2cos2A不一定为0

综上可得,故选C 8.D

55

得sinAcosA,两边平方得; 1212

2525144

sin2Acos2A,1cos2Acos2A,即cos2A。又cosA

[1**********]

cosA. 故选D

13

【解析】tanA0,A是钝角,由tan9.B 【解析】

1b

abcb

试题分析:由正弦定理与题中条件可得即sinAsinBsinCsin2BsinB

11sinBsin2B2sinBcosB,而B为三角形的内角,所以sinB0,所以cosB,24

故选B.

考点:1.正弦定理;2.正弦的二倍角公式. 10.B

【解析】由正弦定理有

BCACAC

,则sinB,所以sinAsinAsinBBC22B45或B135。当B135时,AB195180,不符,所以B45,故选B

11

.【解析】

2

试题分析:由余弦定理得:1216c4cc2.

所以S

1

bcsinA 2

考点:解三角形. 12.2. 【解析】 试题分析:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB, 即sin(B+C)=2sinB, ∵sin(B+C)=sinA,

13.【解析】∵tanC=2,∴

sinC22

=2,又sinC+cosC=1, cosC

∴sinC=

2

4bcsinC,∴sinC

=由正弦定理,得=.∴c=×b= 5sinBsinCsinB5

14.(1)【解析】

556(2) 39

3

,b2,A=30°, 5

12

babsinA5. 4分 ∴由正弦定理,得a

3sinBsinAsinB35

3

(2)在ΔABC中,∵sinB,b2,a=2,且SABC3,

5

11

∴SABCabsinC22sinC2sinC3,

222

∴sinC, 7分

3

22

bsinCbc20, 9分 又由正弦定理,得c

3sinBsinCsinB95

2056∴△ABC 的周长为abc22. 10分 99

试题分析:(1)在ΔABC中,∵sinB

考点:解三角形

点评:解三角形的题目主要是应用正余弦定理实现边与角的联系,本题还涉及到面积公式:

S

111

absinCbcsinAacsinB 222

15.解:①∵sinA+cosA=2cos(A-45°)=

2

, 2

∴cos(A-45°)=

1

.………2分 2

又0°

∴tanA=tan(45°+60°)=

131=-2-.………6分

② sinA=sin105°=sin(45°+60°)=sin45°cos60°+cos45°sin60°=

26

.…9分 4

∴SABC=

11263AC·AbsinA=·2·3·=(2+).……… 12分 2244

(此题还有其它解法,类似给分)

【解析】略

2

16.解:①2x3x20 x12,x2

2

1

……2分 2

又cosC是方程2x3x20的一个根

cosC

1

,在△ABC中∴C = 120度…6分 2

2

2

2

② 由余弦定理可得:cab2ab

2

12

abab 2

即:c2100a10aa575……8分 当a5时,c最小且c

7553 此时abc1053……10分

 △ABC周长的最小值为105……12分

【解析】略

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值