David Freedman统计学书评

首先需要解释一下 程序员为什么 会去学习统计学。

以Helloj2ee的个人经历而言。是因为程序员正在向可用性专家和用户研究专家 转型的时候需要用到。

你或许也是这个原因。那么这篇文章 你就该看了。

从事可用性研究 从事用户研究 需要接触大量数据。举个简单的例子。如果你是一个可用性专家 需要评估两套方案A和B。如果你找了10个人去问,6个人说方案A好 4 个人说方案B好。通常我们就可以简单认为设计方案A好了?但是这样的结论是相当草率的。 至少 可以说明你没有受过太多统计学的训练。如果你受过一定的统计学的训练,那么你只能说 在多少多少置信度的情况下 方案A优于方案B。因为10个 是一个很小很小的样本,而6>4 能说明问题 但是在多大程度上说明问题。这个需要仔细考虑。

我看过很多研究生的文章 坦率讲 这一点 让我很失望。很显然 很多研究生基本功 太不扎实。

Helloj2ee也不扎实。但是好在Helloj2ee意识到这个问题。于是找出了上大学的教材《概率论与数理统计》来看。看了一遍 不懂。看第二遍 懂了 但是不会用。这个时候 Helloj2ee意识到 不是自己的问题 是书的问题了。

中国人的书 真的 绝大部分 写的太有学问了 很难让人看懂。此为其一。其二是看懂了 也不会用到生活实际当中。

David Freedman的这本统计学 我不得不推荐。真的是一本好书 好书 好书。好到什么程度呢?Helloj2ee 在近24年的读书生涯中,除了老师安排的课外习题以外。主动做后面的习题的 只有两本书。David Freedman的这本就是其中之一。另外一本是《深入理解计算机系统》。

这书 好在两点:

1、它确实是一本 高中生 甚至是初中生就能看懂的书。Helloj2ee尽管 学历较高 但是比较属于高学历 低能力的人。 因此教材《概率论与数理统计》不大能看懂。但是这本一看就懂 一看就会。该书中在讲绘制直方图 绘制散点图 甚至是小学生也能够看懂。在Helloj2ee上小学的时候 经常会听说到 美国的小学生 怎么 怎么笨 不会解题。中国的小学生 怎么怎么聪明。那个时候 我也非常得意 觉得去美国了 可能就是天才神童了。到现在 意识到 可能并不是这样。他们训练的可能更注重实际 能够解决实际问题。而我们 只是学课本。举个简单的例子来说 我们在讲方差 讲标准差的时候 一定会讲一个定义 然后摆一个万恶的公式在哪儿 让你感到莫名的高深 莫名的膜拜。但是这本书 里讲标准差 他告诉你是描述数据的散布程度。同时他告诉你一个很有实践经验的东西。即 数列中68%的项都在离平均数的一个标准差范围之内。95%的项都在两个标准差之内。事实上 这个只是正态分布如此。但是 有的时候 科学也不一定是需要严谨的。有的时候 又确实需要严谨。如何处理 什么时候严谨 什么时候不严谨。套用 刚刚播出的非诚勿扰中的 女嘉宾一句话“我觉得 男人该硬的时候得硬 该软的时候得软” helloj2ee也只好说“科学严谨 该硬的时候得硬 该软的时候得软”

2、它锻炼的是一种对数据的统计嗅觉。书中很多习题, 出题类似这种 比如你估计 他的均值应该是1,10,100。或者是你猜测 rms为1,10,100.这样 估计 猜测 在我们传统的教科书里是非常少见的。科学怎么能够估计和猜测呢。这就是该软的时候 你还是得软啊。如果一路把这写题做下去。你就会发现不知不觉你对这些数据变得敏感。你能很快定性有一种感觉。这就是对数据的嗅觉。甚至有的时候 你不用图形化出来就能感觉出来 数据的均值 散布的程度 相关性等等。这让Helloj2ee想起来 《黑客帝国》一幕 他们为了 节省计算机的计算资源 直接看那写纷乱的数据 就能看出端倪 而无需图形化。Helloj2ee想DavidFreedman 也许正想锻炼诸位这样的嗅觉能力。

作为一个老师 看这本书 真的有很多感慨。也对我们现在的教育弊病 深感担忧。我想把这本书推荐给大家吧。当然这本书 买不到了。在我的附件里 有一个电子版。就连我自己也是打印出来。说起来 中国的图书市场也是很有意思的事情 烂书满天飞 而真正的好书 确往往不见踪影了。唉 这也是一个问题啊.........

 /Files/helloj2ee/统计学.part1.rar

/Files/helloj2ee/统计学.part2.rar 

 

 

转载于:https://www.cnblogs.com/helloj2ee/archive/2011/04/11/2013028.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值