莫烦大大TensorFlow学习笔记(8)----优化器

一、TensorFlow中的优化器

  1. tf.train.GradientDescentOptimizer:梯度下降算法
  2. tf.train.AdadeltaOptimizer
  3. tf.train.AdagradOptimizer
  4. tf.train.MomentumOptimizer:动量梯度下降算法
  5. tf.train.AdamOptimizer:自适应矩估计优化算法
  6. tf.train.RMSPropOptimizer
  7. tf.train.AdagradDAOptimizer
  8. tf.train.FtrlOptimizer
  9. tf.train.ProximalGradientDescentOptimizer
  10. tf.train.ProximalAdagradOptimizertf.train.RMSProOptimizer

(1)如果数据是稀疏的,使用自适应学习方法。
(2)RMSprop,Adadelta,Adam是非常相似的优化算法,Adam的bias-correction帮助其在最后优化期间梯度变稀疏的情况下略微战胜了RMSprop。整体来讲,Adam是最好的选择。
(3)很多论文中使用vanilla SGD without momentum。SGD通常能找到最小值,但是依赖健壮的初始化,并且容易陷入鞍点。因此,如果要获得更快的收敛速度和训练更深更复杂的神经网络,需要选择自适应学习方法。

https://blog.csdn.net/winycg/article/details/79363169

 

二、常用的种类:

1、tf.train.Optimizer:

class tf.train.Optimizer:优化器(optimizers)类的基类。
Optimizer基类提供了计算损失梯度的方法,并将梯度应用于变量。这个类定义了在训练模型的时候添加一个操作的API。你基本上不会直接使用这个类,但是你会用到他的子类比如GradientDescentOptimizer, AdagradOptimizer, MomentumOptimizer.等等这些。 

2、tf.train.GradientDescentOptimizer:梯度下降

原理:

  • batch GD【全部样本,速度慢】

  • 随机GD【随机一个样本,速度快,但局部最优】

  • mini-batch GD 【batch个样本,常在数据量较大时使用】

训练集样本数少【≤2000】:采用batchGD

训练集样本数多:采用mini-batch GD,batch大小一般为64-512. 训练时多尝试一下2的次方来找到最合适的batch大小。

 

 

这个类是实现梯度下降算法的优化器。这个构造函数需要的一个学习率就行了。

构造函数:tf.train.GradientDescentOptimizer(0.001).minimize(loss,global_step=None,var_list=None,gate_gradients=GATE_OP,aggregation_method=None,colocate_gradients_with_ops=False,name=None,grad_loss=None)

1 __init__(
2 
3     learning_rate,
4 
5     use_locking=False,
6 
7     name='GradientDescent'
8 
9 )
View Code

learning_rate: (学习率)张量或者浮点数

use_locking: 为True时锁定更新

name: 梯度下降名称,默认为"GradientDescent".

 

3、tf.train.AdadeltaOptimizer:

实现了 Adadelta算法的优化器,可以算是下面的Adagrad算法改进版本。

构造函数: tf.train.AdadeltaOptimizer.init(learning_rate=0.001, rho=0.95, epsilon=1e-08, use_locking=False, name=’Adadelta’)

4、tf.train.AdagradOptimizer:

构造函数:tf.train.AdagradOptimizer.__init__(learning_rate, initial_accumulator_value=0.1, use_locking=False, name=’Adagrad’)

5、tf.train.MomentumOptimizer:

原理:

momentum表示要在多大程度上保留原来的更新方向,这个值在0-1之间,在训练开始时,由于梯度可能会很大,所以初始值一般选为0.5;当梯度不那么大时,改为0.9。 α是学习率,即当前batch的梯度多大程度上影响最终更新方向,跟普通的SGD含义相同。

应用:

构造函数:tf.train.MomentumOptimizer.__init__(learning_rate, momentum, use_locking=False, name=’Momentum’, use_nesterov=False)

 1 __init__(
 2 
 3     learning_rate,
 4 
 5     momentum,
 6 
 7     use_locking=False,
 8 
 9     name='Momentum',
10 
11     use_nesterov=False
12 
13 )
View Code

learning_rate: (学习率)张量或者浮点数

momentum: (动量)张量或者浮点数

use_locking: 为True时锁定更新

name:  梯度下降名称,默认为 "Momentum".

use_nesterov:  为True时,使用 Nesterov Momentum.

 

6、tf.train.RMSPropOptimizer

目的和动量梯度一样,减小垂直方向,增大水平方向。W为水平方向,b为垂直方向。

 

 

7、tf.train.AdamOptimizer:动量和RMSProp结合

应用:

 1 __init__(
 2 
 3     learning_rate=0.001,
 4 
 5     beta1=0.9,
 6 
 7     beta2=0.999,
 8 
 9     epsilon=1e-08,
10 
11     use_locking=False,
12 
13     name='Adam'
14 
15 )
View Code

构造函数:tf.train.AdamOptimizer.__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name=’Adam’)

learning_rate: (学习率)张量或者浮点数,需要调试

beta1:  浮点数或者常量张量 ,表示 The exponential decay rate for the 1st moment estimates.【推荐使用0.9】

beta2:  浮点数或者常量张量 ,表示 The exponential decay rate for the 2nd moment estimates.【推荐使用0.999】

epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper.

use_locking: 为True时锁定更新

name:  梯度下降名称,默认为 "Adam".

 

 

 

转载于:https://www.cnblogs.com/Lee-yl/p/10022615.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值