一、TensorFlow中的优化器
- tf.train.GradientDescentOptimizer:梯度下降算法
- tf.train.AdadeltaOptimizer
- tf.train.AdagradOptimizer
- tf.train.MomentumOptimizer:动量梯度下降算法
- tf.train.AdamOptimizer:自适应矩估计优化算法
- tf.train.RMSPropOptimizer
- tf.train.AdagradDAOptimizer
- tf.train.FtrlOptimizer
- tf.train.ProximalGradientDescentOptimizer
- tf.train.ProximalAdagradOptimizertf.train.RMSProOptimizer
(1)如果数据是稀疏的,使用自适应学习方法。
(2)RMSprop,Adadelta,Adam是非常相似的优化算法,Adam的bias-correction帮助其在最后优化期间梯度变稀疏的情况下略微战胜了RMSprop。整体来讲,Adam是最好的选择。
(3)很多论文中使用vanilla SGD without momentum。SGD通常能找到最小值,但是依赖健壮的初始化,并且容易陷入鞍点。因此,如果要获得更快的收敛速度和训练更深更复杂的神经网络,需要选择自适应学习方法。
https://blog.csdn.net/winycg/article/details/79363169
二、常用的种类:
1、tf.train.Optimizer:
2、tf.train.GradientDescentOptimizer:梯度下降
原理:
-
batch GD【全部样本,速度慢】
-
随机GD【随机一个样本,速度快,但局部最优】
-
mini-batch GD 【batch个样本,常在数据量较大时使用】
训练集样本数少【≤2000】:采用batchGD
训练集样本数多:采用mini-batch GD,batch大小一般为64-512. 训练时多尝试一下2的次方来找到最合适的batch大小。
应用:
这个类是实现梯度下降算法的优化器。这个构造函数需要的一个学习率就行了。
构造函数:tf.train.GradientDescentOptimizer(0.001).minimize(loss,global_step=None,var_list=None,gate_gradients=GATE_OP,aggregation_method=None,colocate_gradients_with_ops=False,name=None,grad_loss=None)
1 __init__( 2 3 learning_rate, 4 5 use_locking=False, 6 7 name='GradientDescent' 8 9 )
learning_rate
: (学习率)张量或者浮点数
use_locking
: 为True时锁定更新
name
: 梯度下降名称,默认为"GradientDescent".
3、tf.train.AdadeltaOptimizer:
实现了 Adadelta算法的优化器,可以算是下面的Adagrad算法改进版本。
构造函数: tf.train.AdadeltaOptimizer.init(learning_rate=0.001, rho=0.95, epsilon=1e-08, use_locking=False, name=’Adadelta’)
4、tf.train.AdagradOptimizer:
构造函数:tf.train.AdagradOptimizer.__init__
(learning_rate, initial_accumulator_value=0.1, use_locking=False, name=’Adagrad’)
5、tf.train.MomentumOptimizer:
原理:
momentum表示要在多大程度上保留原来的更新方向,这个值在0-1之间,在训练开始时,由于梯度可能会很大,所以初始值一般选为0.5;当梯度不那么大时,改为0.9。 α是学习率,即当前batch的梯度多大程度上影响最终更新方向,跟普通的SGD含义相同。
应用:
构造函数:tf.train.MomentumOptimizer.__init__
(learning_rate, momentum, use_locking=False, name=’Momentum’, use_nesterov=False)
1 __init__( 2 3 learning_rate, 4 5 momentum, 6 7 use_locking=False, 8 9 name='Momentum', 10 11 use_nesterov=False 12 13 )
learning_rate: (学习率)张量或者浮点数
momentum: (动量)张量或者浮点数
use_locking: 为True时锁定更新
name: 梯度下降名称,默认为 "Momentum".
use_nesterov: 为True时,使用 Nesterov Momentum.
6、tf.train.RMSPropOptimizer
目的和动量梯度一样,减小垂直方向,增大水平方向。W为水平方向,b为垂直方向。
7、tf.train.AdamOptimizer:动量和RMSProp结合
应用:
1 __init__( 2 3 learning_rate=0.001, 4 5 beta1=0.9, 6 7 beta2=0.999, 8 9 epsilon=1e-08, 10 11 use_locking=False, 12 13 name='Adam' 14 15 )
构造函数:tf.train.AdamOptimizer.__init__
(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name=’Adam’)
learning_rate: (学习率)张量或者浮点数,需要调试
beta1: 浮点数或者常量张量 ,表示 The exponential decay rate for the 1st moment estimates.【推荐使用0.9】
beta2: 浮点数或者常量张量 ,表示 The exponential decay rate for the 2nd moment estimates.【推荐使用0.999】
epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper.
use_locking: 为True时锁定更新
name: 梯度下降名称,默认为 "Adam".