鲍威尔共轭方向法实验报告
姓名: 潘隆武 学号: 班级:机制09-5(2+2)
实验目的
加深对鲍威尔法的基本理论和算法步骤的理解。
培养独立编制、调试计算机程序的能力。
掌握常用优化程序的使用方法。
培养灵活运用优化设计方法解决工程实际问题的能力。
实验要求
明确鲍威尔法基本原理及程序框图。
编制鲍威尔法程序。
三.实验内容
计算实例:用鲍威尔法求函数的极小值
步骤一:利用matlab先画出函数的图线,并标出关键点,以备检验程序的运行结果是否正确,如图a。
图a
步骤二:通过编制鲍威尔法C语言程序求函数极小值
①.鲍威尔法基本原理简述
任选一初始点X0,再选两个线性无关的向量。从X0出发,顺次沿e1、e2作一维搜索得、,两点连线得一新方向d1,用d1代替e1形成两个线性无关向量e2、d1,作为下一轮搜索方向。再从出发,沿d1作一维搜索得点,作为下一轮迭代的初始点。从X1出发,顺次沿e2、d1作一维搜索,得到点、,两点的连线得一新方向d2。、两点是从不同点X0、出发,分别沿d1方向进行一维搜索而得到的极小点。再从出发,沿d2作一维搜索得点X2,即是二维问题的极小点X*。
②、程序的流程图
③.编制鲍威尔法程序
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
double objf(double x[]) /*目标函数子程序 */
{double ff; /*定义目标函数*/
ff=pow(10*(x[1]+x[0]-5),2)+pow((x[1]-x[0]),2);
return(ff); /*返回目标函数的计算值*/
}
void jtf(double x0[],double h0,double s[],int n,double a[],double b[]) /*确定搜索区间的进退法(外推法)子程序*/
{int i;
double *x[3],h,f1,f2,f3;
for(i=0;i<3;i++)
x[i]=(double *)malloc(n*sizeof(double)); /*分配n个double型存储单元,并将首地址存储到指针变量x[i]中*/
h=h0; /*把初始步长h0赋给h*/
for(i=0;i
*(x[0]+i)=x0[i];
f1=objf(x[0]); /*计算x[0]处的函数值*/
for(i=0;i
*(x[1]+i)=*(x[0]+i)+h*s[i];
f2=objf(x[1]);
if(f2>=f1) /*若f2>f1,则步长变号,反向搜索*/
{ h=-h0;
for(i=0;i
*(x[2]+i)=*(x[0]+i);
f3=f1;
for(i=0;i
{*(x[0]+i)=*(x[1]+i);
*(x[1]+i)=*(x[2]+i);
}
f1=f2;
f2=f3;
}
for(;;) /*步长乘2继续向前搜索直到函数值再次上升为止*/
{h=2*h;
for(i=0;i
*(x[2]+i)=*(x[1]+i)+h*s[i];
f3=objf(x[2]);
if(f2
else
{ for(i=0;i
{*(x[0]+i)=*(x[1]+i);
*(x[1]+i)=*(x[2]+i);
}
f1=f2;
f2=f3;
}
}
if(h<0) /*搜索结束,根据h的正负把搜索得到的区间左、右端点分别赋给a、b*/
for(i=0;i
{a[i]=*(x[2]+i);
b[i]=*(x[0]+i);
}
else
for(i=0;i
{a[i]=*(x[0]+i);
b[i]=*(x[2]+i);
}
for(i=0;i<3;i++)
free(x[i]); /*释放x[]存储单元的内存*/
}
double gold(double a[],double b[],double eps,int