计算机教案 南京商业学校,4.7南京商业学校网络教学管理系统介绍

南京商业学校网络教学管理系统介绍

网络教学平台以课程为中心,涉及到平台首页、教学资源、教学组织、课堂教学、课外交流、课外作业、课外训练、在线考试、成绩管理、试卷管理与平台管理共十一个方面,基于校园网/互联网为学生、教师教辅人员提供高效便捷、先进实用的网络教学手段。

一、平台首页

包括通知公告、精品课程、名师风采、访问排行、友情链接等。

22ff98fc9318e3d4c8df51b3ef71b61b.png

二、教学资源

一招简便快捷地构建课程资源中心;构建精品课程网站,提供丰富的个性化主题、风格模版;制作、编辑与发布的网络课程支持文字、图片、照片、音频、视频、Flash等多种格式。

三、教学组织

以课程为中心,分课程设置教学大纲、教学安排、课外训练、考试安排、参考资料等。

四、课堂教学

教师分课程创建网络课堂,授权相应学生进入网络课堂。实现实时的课程直播与录制、集中的音频与视频监控、详细的网络课堂考勤记录。

五、课外交流

课程通知;收发信件;分课程录入、查询常见问题及答案。学生在线提交问题、教师在线解答问题。师生通过教学论坛、教学博客在线交流或分组讨论;师生通过聊天室实时在线交流。

六、课外作业

教师在线布置作业;学生在线完成作业;教师在线批改作业。

七、课外训练

教师在线安排训练;学生在线开展规定训练或自主训练。

八、在线考试

教师安排学生在线考试;学生在指定时间内在线答题;平台自动阅卷(客观题);教师在线批阅试卷(主观题)。

4bf80f94bc5358fb36881f74e6abf18b.png

九、成绩管理

教师设置成绩权重(含课外作业、课外训练、在线考试);教师分课程确认学生成绩。

十、试卷管理

知识点分类:分课程设置知识点。分课程创建题库:支持单选题、多选题、单项填空题、多项填空题、判断题、匹配题、排序题、选词填句、简答题、论述题、计算数字题、文件回应题、阅读理解题等各种题型。智能组卷:设置各种参数,智能组织试卷。涉及到试卷总题数、试卷总分数、试卷总时间、各种题型试题数、各种题型分数或百分比、试卷综合难度、各种难度题型试题分数或百分比、试卷综合区分度、知识点试题数、知识点试题分数或百分比。辅助组卷:由教师自行选择试题组织试卷。

十一、平台管理

为平台管理员提供实时监控平台运行的有效手段,涉及到权限管理、数据库维护与平台日志。

十二、为学生提供的服务

包括教学资源、教学组织、课堂教学、课外交流、课外作业、课外训练、在线考试、成绩管理、教学评价、个人信息。

十三、为教师教辅人员提供的服务

包括教学资源、教学组织、课堂教学、课外交流、课外作业、课外训练、在线考试、成绩管理、教学评价、试卷管理、个人信息。

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
《芋道开发指南文档-2023-10-27更新》是针对软件开发者和IT专业人士的一份详尽的资源集合,旨在提供最新的开发实践、范例代码和最佳策略。这份2023年10月27日更新的文档集,包含了丰富的模板和素材,帮助开发者在日常工作中提高效率,保证项目的顺利进行。 让我们深入探讨这份文档的可能内容。"芋道"可能是一个开源项目或一个专业的技术社区,其开发指南涵盖了多个方面,例如: 1. **编程语言指南**:可能包括Java、Python、JavaScript、C++等主流语言的编码规范、最佳实践以及常见问题的解决方案。 2. **框架与库的应用**:可能会讲解React、Vue、Angular等前端框架,以及Django、Spring Boot等后端框架的使用技巧和常见应用场景。 3. **数据库管理**:涵盖了SQL语言的基本操作,数据库设计原则,以及如何高效使用MySQL、PostgreSQL、MongoDB等数据库系统。 4. **版本控制**:详细介绍了Git的工作流程,分支管理策略,以及与其他开发工具(如Visual Studio Code、IntelliJ IDEA)的集成。 5. **持续集成与持续部署(CI/CD)**:包括Jenkins、Travis CI、GitHub Actions等工具的配置和使用,以实现自动化测试和部署。 6. **云服务与容器化**:可能涉及AWS、Azure、Google Cloud Platform等云计算平台的使用,以及Docker和Kubernetes的容器化部署实践。 7. **API设计与测试**:讲解RESTful API的设计原则,Swagger的使用,以及Postman等工具进行API测试的方法。 8. **安全性与隐私保护**:涵盖OAuth、JWT认证机制,HTTPS安全通信,以及防止SQL注入、
该是一个在 Kaggle 上发布的数据集,专注于 2024 年出现的漏洞(CVE)信息。以下是关于该数据集的详细介绍:该数据集收集了 2024 年记录在案的各类漏洞信息,涵盖了漏洞的利用方式(Exploits)、通用漏洞评分系统(CVSS)评分以及受影响的操作系统(OS)。通过整合这些信息,研究人员和安全专家可以全面了解每个漏洞的潜在威胁、影响范围以及可能的攻击途径。数据主要来源于权威的漏洞信息平台,如美国国家漏洞数据库(NVD)等。这些数据经过整理和筛选后被纳入数据集,确保了信息的准确性和可靠性。数据集特点:全面性:涵盖了多种操作系统(如 Windows、Linux、Android 等)的漏洞信息,反映了不同平台的安全状况。实用性:CVSS 评分提供了漏洞严重程度的量化指标,帮助用户快速评估漏洞的优先级。同时,漏洞利用信息(Exploits)为安全研究人员提供了攻击者可能的攻击手段,有助于提前制定防御策略。时效性:专注于 2024 年的漏洞数据,反映了当前网络安全领域面临的新挑战和新趋势。该数据集可用于多种研究和实践场景: 安全研究:研究人员可以利用该数据集分析漏洞的分布规律、攻击趋势以及不同操作系统之间的安全差异,为网络安全防护提供理论支持。 机器学习与数据分析:数据集中的结构化信息适合用于机器学习模型的训练,例如预测漏洞的 CVSS 评分、识别潜在的高危漏洞等。 企业安全评估:企业安全团队可以参考该数据集中的漏洞信息,结合自身系统的实际情况,进行安全评估和漏洞修复计划的制定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值