计算机教案 南京商业学校,4.7南京商业学校网络教学管理系统介绍

南京商业学校网络教学管理系统介绍

网络教学平台以课程为中心,涉及到平台首页、教学资源、教学组织、课堂教学、课外交流、课外作业、课外训练、在线考试、成绩管理、试卷管理与平台管理共十一个方面,基于校园网/互联网为学生、教师教辅人员提供高效便捷、先进实用的网络教学手段。

一、平台首页

包括通知公告、精品课程、名师风采、访问排行、友情链接等。

22ff98fc9318e3d4c8df51b3ef71b61b.png

二、教学资源

一招简便快捷地构建课程资源中心;构建精品课程网站,提供丰富的个性化主题、风格模版;制作、编辑与发布的网络课程支持文字、图片、照片、音频、视频、Flash等多种格式。

三、教学组织

以课程为中心,分课程设置教学大纲、教学安排、课外训练、考试安排、参考资料等。

四、课堂教学

教师分课程创建网络课堂,授权相应学生进入网络课堂。实现实时的课程直播与录制、集中的音频与视频监控、详细的网络课堂考勤记录。

五、课外交流

课程通知;收发信件;分课程录入、查询常见问题及答案。学生在线提交问题、教师在线解答问题。师生通过教学论坛、教学博客在线交流或分组讨论;师生通过聊天室实时在线交流。

六、课外作业

教师在线布置作业;学生在线完成作业;教师在线批改作业。

七、课外训练

教师在线安排训练;学生在线开展规定训练或自主训练。

八、在线考试

教师安排学生在线考试;学生在指定时间内在线答题;平台自动阅卷(客观题);教师在线批阅试卷(主观题)。

4bf80f94bc5358fb36881f74e6abf18b.png

九、成绩管理

教师设置成绩权重(含课外作业、课外训练、在线考试);教师分课程确认学生成绩。

十、试卷管理

知识点分类:分课程设置知识点。分课程创建题库:支持单选题、多选题、单项填空题、多项填空题、判断题、匹配题、排序题、选词填句、简答题、论述题、计算数字题、文件回应题、阅读理解题等各种题型。智能组卷:设置各种参数,智能组织试卷。涉及到试卷总题数、试卷总分数、试卷总时间、各种题型试题数、各种题型分数或百分比、试卷综合难度、各种难度题型试题分数或百分比、试卷综合区分度、知识点试题数、知识点试题分数或百分比。辅助组卷:由教师自行选择试题组织试卷。

十一、平台管理

为平台管理员提供实时监控平台运行的有效手段,涉及到权限管理、数据库维护与平台日志。

十二、为学生提供的服务

包括教学资源、教学组织、课堂教学、课外交流、课外作业、课外训练、在线考试、成绩管理、教学评价、个人信息。

十三、为教师教辅人员提供的服务

包括教学资源、教学组织、课堂教学、课外交流、课外作业、课外训练、在线考试、成绩管理、教学评价、试卷管理、个人信息。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值