《计算机视觉:模型、学习和推理》一2.6 独立性

2.6 独立性

如果从变量x不能获得变量y的任何信息(反之亦然),就称x和y是独立的(见图2-6),可以表示为:
2017_09_19_111946
图2-6 独立性。a) 连续独立变量x和y的联合概率密度函数。x和y的独立性意味着每一个条件分布相同:从y的值中不能推断出x的取值概率,反之亦然。与图2-5中变量的依赖形成对比。b) 离散独立变量x和y的联合分布。对于给定的y值x的条件分布相同
2017_09_19_112033
代入式(2-5)中可得,独立变量的联合概率Pr(x,y)是边缘概率Pr(x)和Pr(y)的乘积。
2017_09_19_112126

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值