2.6 独立性
如果从变量x不能获得变量y的任何信息(反之亦然),就称x和y是独立的(见图2-6),可以表示为:
图2-6 独立性。a) 连续独立变量x和y的联合概率密度函数。x和y的独立性意味着每一个条件分布相同:从y的值中不能推断出x的取值概率,反之亦然。与图2-5中变量的依赖形成对比。b) 离散独立变量x和y的联合分布。对于给定的y值x的条件分布相同
代入式(2-5)中可得,独立变量的联合概率Pr(x,y)是边缘概率Pr(x)和Pr(y)的乘积。
如果从变量x不能获得变量y的任何信息(反之亦然),就称x和y是独立的(见图2-6),可以表示为:
图2-6 独立性。a) 连续独立变量x和y的联合概率密度函数。x和y的独立性意味着每一个条件分布相同:从y的值中不能推断出x的取值概率,反之亦然。与图2-5中变量的依赖形成对比。b) 离散独立变量x和y的联合分布。对于给定的y值x的条件分布相同
代入式(2-5)中可得,独立变量的联合概率Pr(x,y)是边缘概率Pr(x)和Pr(y)的乘积。