A轮就拿到六千万,安全公司“青藤”靠的是什么?

青藤云安全采用自适应安全技术,为企业提供定制化的防御方案。其独特之处在于结合机器学习与人工干预,实现智能化的威胁识别与响应。这家初创公司在成立仅一年的时间里已取得显著成就,并获得了六千万人民币的A轮融资。
   
    2015年对于各行各业来说,一定都显得漫长难熬。就连所向披靡的互联网行业都遇到了“资本寒冬”。仍旧坚挺的营生屈指可数,无论用什么姿势盘点,“互联网安全”一定会榜上有名。

经济环境的萧条和互联网的蛮荒共同造就了互联网空间盗匪猖獗、兵荒马乱,今年以“某易”为首、“某榴”为吉祥物的无数次数据泄露已经让无辜的童鞋们累觉不爱。按照这个逻辑,在乱世里开个镖局,确实不愁找不到股东。

美国著名的大数据安全公司Palantir前两天刚刚宣布了既逆天又吉利的8.8亿美元融资,估值已经达到了200亿美元。而不满意80亿美金估值的奇虎360也正式完成私有化,有业内人士估计,360在国内上市之后保守估值也要达到2000亿人民币。

而安全行业的坚挺不仅表现在大企业估值坐火箭,还表现在初创企业被资本追捧。例如以网络安全特种兵姿态出现的国内安全公司知道创宇,连续被腾讯投资,目前估值达到了20亿人民币。就在今天,另一家以自适应安全为标签的特色安全公司青藤拿到了来自宽带资本和红点创投的六千万人民币A轮投资。从公开信息来看,青藤此次融资,创下了安全行业A轮融资金额的最高记录。

A轮就拿到六千万,安全公司青藤靠的是什么?

【青藤云安全创始人张福】

那么,这家听起来有点像园艺公司的青藤究竟是做什么的呢?

通俗来讲,青藤的业务就是互联网界的镖局,主要的任务就是保护企业的业务安全。不过,在保护的方法上,青藤的做法很有新意。它会根据企业的业务形态,“高度定制”出一套“自适应”的防御体系。形象地来说,就是根据企业的身体轮廓,做一套全贴合的“小雨衣”。

青藤创始人张福是一个对技术极度自信的人,他极为推崇这种“细粒度”的防护体系。在很多场合他都表示:安全已经不能靠传统的“城防”,“塔防”才是安全的最新玩法。

如果用塔防的游戏来比喻,青藤的防御模式就是在企业的业务路径旁建立不同的激光塔,这些激光塔搭载了机器学习的功能,根据业务的进行而不断识别哪些是正常的业务,哪些是非法的入侵。而当这些激光塔自动识别吃力的时候,就会求助于玩家(人),玩家来决定是否对炮塔进行升级,或者在其他地方新建炮塔。进而升级之后的炮塔又开始了新一轮的防御。

从最近各大安全公司的动向来看,这种强调人+高智能工具的模式也正在成为安全圈的共识。而在这条路上先走一步的青藤,获得这么高的融资额,也就可以解释了。我雷之前的报道《黑客张福:互联网是黑暗的森林》曾经详细介绍过青藤的独特玩法,感兴趣的童鞋可以翻来看看。

A轮就拿到六千万,安全公司青藤靠的是什么?

【青藤官网上对于“行为模式入侵识别”的解释】

目前来看,青藤的玩法在业内得到了一些认可,每天和资金打交道的互联网金融成为青藤客户中的主力,在医疗和企业服务领域青藤也拓展了一些客户。根据青藤提供的数据,从去年八月成立以来,一年多时间营收已过千万。不过青藤并未透露现在公司的估值。

和瀚海源、知道创宇等很多安全公司“站队”BAT不同,青藤的融资之路看起来更加中立。从天使轮的真格基金、云天使基金、丰厚资本,到A轮的宽带资本和红点创投。目前仍然没有产业资本进入青藤,这种“干净”的背景也是支持青藤估值的重要砝码。这恰恰验证了张福之前的话:“在竞争中我们宁可被干死,也不愿意格局受限。”

   
 
  本文作者: 史中

本文转自雷锋网禁止二次转载, 原文链接
内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,涵盖正向与逆向运动学求解、正向动力学控制,并采用拉格朗日-欧拉法推导逆向动力学方程,所有内容均通过Matlab代码实现。同时结合RRT路径规划与B样条优化技术,提升机械臂运动轨迹的合理性与平滑性。文中还涉及多种先进算法与仿真技术的应用,如状态估计中的UKF、AUKF、EKF等滤波方法,以及PINN、INN、CNN-LSTM等神经网络模型在工程问题中的建模与求解,展示了Matlab在机器人控制、智能算法与系统仿真中的强大能力。; 适合人群:具备一定Ma六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)tlab编程基础,从事机器人控制、自动化、智能制造、人工智能等相关领域的科研人员及研究生;熟悉运动学、动力学建模或对神经网络在控制系统中应用感兴趣的工程技术人员。; 使用场景及目标:①实现六自由度机械臂的精确运动学与动力学建模;②利用人工神经网络解决传统解析方法难以处理的非线性控制问题;③结合路径规划与轨迹优化提升机械臂作业效率;④掌握基于Matlab的状态估计、数据融合与智能算法仿真方法; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点理解运动学建模与神经网络控制的设计流程,关注算法实现细节与仿真结果分析,同时参考文中提及的多种优化与估计方法拓展研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值