1.欧拉图
定义
欧拉通路/回路:通过每条边有且仅有一次的通路/回路
欧拉图:具有欧拉回路的图
半欧拉图:有欧拉通路,无欧拉回路
判定定理
无向欧拉图判别法:G是无向欧拉图
G是连通图且G无奇度顶点
无向半欧拉图判别法:G是无向半欧拉图
G是连通的且有两个奇度顶点
有向欧拉图判别法:G是有向欧拉图
G是连通图且入度等于出度
有向半欧拉图判别法:G是有向半欧拉图
G是连通的且有两个奇度顶点,首尾的入读与出度相差
本文介绍了欧拉图和哈密顿图的概念、判定定理以及在MATLAB中的实现。欧拉图强调每个边恰好通过一次,而哈密顿图关注每个点恰好通过一次。Fleury算法用于构造欧拉回路,而哈密顿图的判定涉及图的连通性和度数条件。此外,文中还提及了这两个概念在实际问题中的应用,如中国邮递员问题和货郎担问题。
定义
欧拉通路/回路:通过每条边有且仅有一次的通路/回路
欧拉图:具有欧拉回路的图
半欧拉图:有欧拉通路,无欧拉回路
判定定理
无向欧拉图判别法:G是无向欧拉图
G是连通图且G无奇度顶点
无向半欧拉图判别法:G是无向半欧拉图
G是连通的且有两个奇度顶点
有向欧拉图判别法:G是有向欧拉图
G是连通图且入度等于出度
有向半欧拉图判别法:G是有向半欧拉图
G是连通的且有两个奇度顶点,首尾的入读与出度相差
6981

被折叠的 条评论
为什么被折叠?