3-2 利用程序huff_enc和huff_dec进行以下操作(在每种情况下,利用由被压缩图像生成的码本)。
(a)对Sena、Sensin和Omaha图像时行编码。
(b)编写一段程序,得到相邻之差,然后利用huffman对差值图像进行编码。
(c) 使用adap_huff重复(a)和(b)。
答:
文件名 | 压缩前大小 | 压缩后大小 | 压缩比 |
Sence | 64k | 57k | 0.89 |
Sensin | 64k | 61k | 0.95 |
Omaha | 64k | 58k | 0.91 |
3-4 一个信源从符号集A={a1, a2, a3, a4, a5}中选择字母,概率为P(a1)=0.15,P(a2)=0.04,P(a3)=0.26,P(a4)=0.05,P(a5)=0.50。
(a)计算这个信源的熵。
(b)求这个信源的霍夫曼码。
(c) 求(b)中代码的平均长度及其冗余度。
解:(a) H=-0.15log20.15-0.04log20.04-0.26log20.26-0.05log20.05-0.50log20.50
=0.15*2.737+0.04*4.644+0.26*1.943+0.05*4.322+0.50*1
=0.411+0.186+0.505+0.216+0.5
(b)霍夫曼编码 a1:010 a2:0111 a3:00 a4:0110 a5:1
冗余度为:l-H=1.83-1.818=0.012 bit
(c) L=0.15*3+0.04*4+0.26*2+0.05*4+0.5*1=1.83(bit)
3-5 一个符号集A={a1, a2, a3, a4,},其概率为P(a1)=0.1,P(a2)=0.3,P(a3)=0.25,P(a4)=0.35,使用以下过程找出一种霍夫曼码:
(a)本章概述的第一种过程:
(b)最小方差过程。
解释这两种霍夫曼码的区别。
答:第二种霍夫曼码方差比第一种小,所以第二种霍夫曼编码更好。
2-6在本书配套的数据中有几个图像和语音文件。
(a) 编写一段程序,计算其中一些图像和语音文件的一阶熵。
(b) 选择一个图像文件,计算其二阶熵。试解释一阶熵与二阶熵的差别。
(c) 对于(b)中所有的图像文件,计算其相邻像素之差的熵,试解释你的发现。
答:(a)