Hive学习笔记——HQL用法及UDF,Transform

Hive中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符 (”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile)。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此,Hive 在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。

 

基本数据类型
tinyint/smallint/int/bigint
float/double
boolean
string
复杂数据类型
Array/Map/Struct

 external:

//external
CREATE EXTERNAL TABLE tab_ip_ext(id int, name string,
     ip STRING,
     country STRING)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
 STORED AS TEXTFILE
 LOCATION '/external/hive';

hdfs上的数据存在/external/hive上面。这样删除tab_ip_ext表,/external/hive里面的内容不会删除,而且/external/hive里面的内容也不会被剪切。

CTAS:

// CTAS  用于创建一些临时表存储中间结果
CREATE TABLE tab_ip_ctas
   AS
SELECT id new_id, name new_name, ip new_ip,country new_country
FROM tab_ip_ext
SORT BY new_id;

insert:

//insert from select   用于向临时表中追加中间结果数据
create table tab_ip_like like tab_ip;

insert overwrite table tab_ip_like
    select * from tab_ip;

Hive中不能一条一条insert,但是可以成组的insert。不加overwrite会报错。

insert into table t_cost_like select * from t_cost_ctas; 

这种方式可以追加。

partition:

 create table t_cost_pt(   
     id int, 
     name string,
     capacity string,
     price double)
     partitioned by (data string)
     row format delimited
     fields terminated by '\t';
 load data local inpath '/home/hadoop/hivedata/cost.data' into table t_cost_pt partition(data='001');
 load data local inpath '/home/hadoop/hivedata/cost.data' into table t_cost_pt partition(data='002');
 load data local inpath '/home/hadoop/hivedata/cost.data' into table t_cost_pt partition(data='003');

我们可以看一下partition实际的存储结构,其实就是文件夹。

show partitions t_cost_pt;
select * from t_cost_pt where data='001'

 array:

//array 
create table tab_array(a array<int>,b array<string>)
row format delimited
fields terminated by '\t'
collection items terminated by ',';

示例数据
tobenbrone,laihama,woshishui     13866987898,13287654321
abc,iloveyou,itcast     13866987898,13287654321


select a[0] from tab_array;
select * from tab_array where array_contains(b,'word');
insert into table tab_array select array(0),array(name,ip) from tab_ext t; 

map:

//map
create table tab_map(name string,info map<string,string>)
row format delimited
fields terminated by '\t'
collection items terminated by ';'
map keys terminated by ':';

示例数据:
fengjie            age:18;size:36A;addr:usa
furong        age:28;size:39C;addr:beijing;weight:180KG


load data local inpath '/home/hadoop/hivetemp/tab_map.txt' overwrite into table tab_map;
insert into table tab_map select name,map('name',name,'ip',ip) from tab_ext; 

struct:

//struct
create table tab_struct(name string,info struct<age:int,tel:string,addr:string>)
row format delimited
fields terminated by '\t'
collection items terminated by ','

load data local inpath '/home/hadoop/hivetemp/tab_st.txt' overwrite into table tab_struct;
insert into table tab_struct select name,named_struct('age',id,'tel',name,'addr',country) from tab_ext;

select:

select * from tab_ext sort by id desc limit 5;

select a.ip,b.book from tab_ext a join tab_ip_book b on(a.name=b.name);

在shell下执行hive语句:

hive -S -e 'select country,count(*) from chenchi.tab_ext' > /home/hadoop/hivetemp/e.txt

chenchi是库名。

有了这种执行机制,就使得我们可以利用脚本语言(bash shell,python)进行hql语句的批量执行。

hive的udf(自定义函数):

0.要继承org.apache.hadoop.hive.ql.exec.UDF类实现evaluate

自定义函数调用过程:
1.添加jar包(在hive命令行里面执行)
hive> add jar /root/NUDF.jar;

2.创建临时函数
hive> create temporary function getNation as 'cn.itcast.hive.udf.NationUDF';

3.调用
hive> select id, name, getNation(nation) from beauty;

4.将查询结果保存到HDFS中
hive> create table result row format delimited fields terminated by '\t' as select * from beauty order by id desc;    
hive> select id, getAreaName(id) as name from tel_rec;


create table result row format delimited fields terminated by '\t' as select id, getNation(nation) from beauties;

 

 

实战:自定义函数UDF

需求:

13884243554 234 450
13664243554 242 440
13994243554 211 430
13444243554 222 420

自定义一个识别手机号所在地区的函数getarea,然后通过该函数进行hive的查询。

写一个Java类,定义相关的函数逻辑

打成jar包

上传到hive的lib下

在hive中创建一个函数getarea,跟jar包中的自定义java类建立关联。

 

代码如下:要把hive的lib下面的jar包全部导入。

package com.darrenchan.bigdata;

import java.util.HashMap;

import org.apache.hadoop.hive.ql.exec.UDF;

public class PhoneNumToArea extends UDF {
    private static HashMap<String, String> areaMap = new HashMap<>();
    static {
        areaMap.put("1388", "beijing");
        areaMap.put("1399", "tianjin");
        areaMap.put("1366", "nanjing");
    }

    // 一定要用public修饰才能被hive调用
    // 返回值以及参数个数及类型都可以随意指定
    public String evaluate(String pnb) {
        String result = areaMap.get(pnb.substring(0, 4)) == null ? (pnb + " huoxing")
                : (pnb + " " + areaMap.get(pnb.substring(0, 4)));
        return result;
    }
}

 

将程序打成jar包,并加入到hive中:

hive>add jar /home/hadoop/phonenum-to-area.jar;

创建该函数:

hive>create temporary function getarea as 'com.darrenchan.bigdata.PhoneNumToArea';

 

创建表:

hive>create table t_flow(phonenum string, upflow int, downflow int)
> row format delimited
> fields terminated by '\t';

 

为表导入数据:

hive>load data local inpath '/home/hadoop/hivedata/flow.txt' into table t_flow;

 

进行查询验证:

hive>select getarea(phonenum),upflow,downflow from t_flow;

结果如下:

13884243554 beijing 234 450
13664243554 nanjing 242 440
13994243554 tianjin 211 430
13444243554 huoxing 222 420

 

实战:自定义脚本Transform

Hive的 TRANSFORM 关键字提供了在SQL中调用自写脚本的功能

适合实现Hive中没有的功能又不想写UDF的情况。

1、先加载rating.json文件到hive的一个原始表 rat_json

create table rat_json(line string) row format delimited;
load data local inpath '/home/hadoop/rating.json' into table rat_json;

 

如下:

+----------------------------------------------------------------+--+
| rat_json.line |
+----------------------------------------------------------------+--+
| {"movie":"1193","rate":"5","timeStamp":"978300760","uid":"1"} |
| {"movie":"661","rate":"3","timeStamp":"978302109","uid":"1"} |
| {"movie":"914","rate":"3","timeStamp":"978301968","uid":"1"} |
| {"movie":"3408","rate":"4","timeStamp":"978300275","uid":"1"} |
| {"movie":"2355","rate":"5","timeStamp":"978824291","uid":"1"} |
| {"movie":"1197","rate":"3","timeStamp":"978302268","uid":"1"} |
| {"movie":"1287","rate":"5","timeStamp":"978302039","uid":"1"} |
| {"movie":"2804","rate":"5","timeStamp":"978300719","uid":"1"} |
| {"movie":"594","rate":"4","timeStamp":"978302268","uid":"1"} |
| {"movie":"919","rate":"4","timeStamp":"978301368","uid":"1"} |
+----------------------------------------------------------------+--+

2、需要解析json数据成四个字段,插入一张新的表 t_rating

create table t_rating as
select get_json_object(line,'$.movie') movie,get_json_object(line,'$.rate') rate,
get_json_object(line,'$.timeStamp') timestring,get_json_object(line,'$.uid') uid from rat_json;

 

3、使用transform+python的方式去转换unixtime为weekday

先编辑一个python脚本文件
########python######代码
vi weekday_mapper.py

#!/bin/python
import sys
import datetime

for line in sys.stdin:
  line = line.strip()
  movieid, rating, unixtime,userid = line.split('\t')
  weekday = datetime.datetime.fromtimestamp(float(unixtime)).isoweekday()
  print '\t'.join([movieid, rating, str(weekday),userid])

保存文件
然后,将文件加入hive的classpath:

hive>add FILE /home/hadoop/weekday_mapper.py;
hive>create TABLE u_data_new as
SELECT
  TRANSFORM (movie, rate, timestring,uid)
  USING 'python weekday_mapper.py'
  AS (movie, rate, weekday,uid)
FROM t_rating;

 

检验:

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,下面是SparkSQL代码笔记03——连接Hive的中文回复: 在SparkSQL中,我们可以通过以下步骤连接Hive: 1. 首先,需要在SparkSession中启用Hive支持,可以使用以下代码: ``` from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("SparkSQL Hive Example") \ .config("spark.sql.warehouse.dir", "/user/hive/warehouse") \ .enableHiveSupport() \ .getOrCreate() ``` 其中,`enableHiveSupport()`方法启用了Hive支持,`config("spark.sql.warehouse.dir", "/user/hive/warehouse")`指定了Hive元数据存储的目录。 2. 接下来,我们可以使用`spark.sql()`方法执行Hive SQL语句,例如: ``` spark.sql("show databases").show() ``` 这将显示所有的Hive数据库。 3. 如果需要在SparkSQL中访问Hive表,可以使用以下代码: ``` df = spark.sql("select * from my_hive_table") ``` 其中,`my_hive_table`是Hive中的表名。 4. 如果需要在SparkSQL中创建Hive表,可以使用以下代码: ``` spark.sql("create table my_hive_table (id int, name string)") ``` 这将在Hive中创建一个名为`my_hive_table`的表,包含两个列:`id`和`name`。 以上就是连接Hive的基本步骤。需要注意的是,连接Hive需要在Spark集群中安装Hive,并且需要将Hive的JAR包添加到Spark的CLASSPATH中。 ### 回答2: SparkSQL是Apache Spark的一个组件,它提供了用于分布式数据处理的高级SQL查询引擎。SparkSQL支持连接多种数据源,其中之一就是Hive。 如何连接Hive? 在开始连接Hive之前,我们需要确保Hadoop和Hive的配置已经被正确的设置好了,以便Spark能够访问Hive元数据和数据。 首先,我们需要在Spark环境中添加Hive支持。运行下面的代码: `from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("hive_support") \ .enableHiveSupport() \ .getOrCreate()` 其中,`.enableHiveSupport()`将启用hive支持。 接下来,我们可以使用SparkSession连接Hive。运行下面的代码: `hive_df = spark.sql("SELECT * FROM default.student")` 其中,“default”是Hive的默认数据库,“student”是Hive数据库中的表名。 如果你要访问非默认的Hive数据库,可以使用下面的代码: `hive_df = spark.sql("SELECT * FROM dbname.student")` 其中,“dbname”是非默认的Hive数据库名。 我们还可以使用HiveContext来连接Hive。运行下面的代码: `from pyspark.sql import HiveContext hive_context = HiveContext(sc)` 其中,“sc”是SparkContext对象。 我们可以像这样从Hive中检索数据: `hive_df = hive_ctx.sql("SELECT * FROM default.student")` 现在你已经成功地连接Hive并从中检索了数据,你可以使用SparkSQL的强大功能对数据进行分析。而在连接Hive之外,在SparkSQL中还可以连接其他数据源,包括MySQL、PostgreSQL、Oracle等。 ### 回答3: Spark SQL是一个强大的分布式计算引擎,它可以支持处理多种数据源,并可通过Spark SQL shell、Spark应用程序或JDBC/ODBC接口等方式进行操作。其中,连接Hive是Spark SQL最常用的数据源之一。下面,将介绍如何通过Spark SQL连接Hive。 1、在Spark配置中设置Hive Support 要连接Hive,首先需要在Spark配置中开启Hive Support。在启动Spark Shell时,可以添加如下参数: ``` ./bin/spark-shell --master local \ --conf spark.sql.warehouse.dir="/user/hive/warehouse" \ --conf spark.sql.catalogImplementation=hive \ --conf spark.sql.hive.metastore.version=0.13 \ --conf spark.sql.hive.metastore.jars=maven ``` 这里以本地模式为例,设置Spark SQL的元数据存储在本地文件系统中,设置Hive为catalog实现,以及为Hive Metastore设置版本和JAR文件路径。根据实际情况,还可以指定其他参数,如Hive Metastore地址、数据库名称、用户名和密码等。 2、创建SparkSession对象 在连接Hive之前,需要先创建SparkSession对象。可以通过调用SparkSession.builder()静态方法来构建SparkSession对象,如下所示: ``` val spark = SparkSession.builder() .appName("SparkSQLTest") .config("spark.sql.warehouse.dir", "/user/hive/warehouse") .enableHiveSupport() .getOrCreate() ``` 这里通过builder()方法指定应用程序名称、元数据存储路径以及启用Hive Support,最后调用getOrCreate()方法创建SparkSession对象。 3、通过Spark SQL操作Hive表 通过Spark SQL连接Hive后,就可以通过Spark SQL语句来操作Hive表了。例如,我们可以使用select语句查询Hive表中的数据: ``` val df = spark.sql("SELECT * FROM tablename") df.show() ``` 其中,select语句指定要查询的列和表名,然后通过show()方法来显示查询结果。 除了查询数据之外,Spark SQL还可以通过insertInto语句将数据插入到Hive表中: ``` val data = Seq(("Alice", 25), ("Bob", 30)) val rdd = spark.sparkContext.parallelize(data) val df = rdd.toDF("name", "age") df.write.mode(SaveMode.Append).insertInto("tablename") ``` 这里先创建一个包含数据的RDD对象,然后将其转换为DataFrame对象,并指定列名。接着,通过insertInto()方法将DataFrame对象中的数据插入到Hive表中。 总之,通过Spark SQL连接Hive可以方便地查询、插入、更新和删除Hive表中的数据,从而实现更加灵活和高效的数据处理。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值