题目描述
给出三个整数p,k,a,其中p为质数,求出所有满足x^k=a (mod p),0<=x<=p-1的x。
输入
三个整数p,k,a。
输出
第一行一个整数,表示符合条件的x的个数。 第二行开始每行一个数,表示符合条件的x,按从小到大的顺序输出。
样例输入
11 3 8
样例输出
1
2
2
提示
2<=p<p<=10^9
2<=k<=100000,0<=a
首先求出$p$的原根$g$,再求出$a$的指标$b$,即$g^b\equiv a(mod\ p)$。我们知道对于$[0,p-1]$中任意数都能用原根的幂次表示,所以将$x$表示成$g^y$即$g^y\equiv x(mod\ p)$,那么原式就变成了$(g^y)^k\equiv g^b(mod\ p)->g^{yk}\equiv g^b(mod\ p)$。根据欧拉定理可知$g^{p-1}\equiv 1(mod\ p)$,所以$yk\equiv b(mod\ (p-1))$,只需要用$exgcd$求出$[0,p-1]$内所有的$y$即可。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
ll p,k,a;
ll g,f;
ll prime[100010];
int tot;
ll q[100010];
int cnt;
map<ll,int>b;
ll quick(ll x,ll y)
{
ll res=1ll;
while(y)
{
if(y&1)
{
res=res*x%p;
}
y>>=1;
x=x*x%p;
}
return res;
}
ll gcd(ll x,ll y)
{
return y==0?x:gcd(y,x%y);
}
void exgcd(ll A,ll B,ll &x,ll &y)
{
if(!B)
{
x=1;
y=0;
return ;
}
exgcd(B,A%B,y,x);
y-=(A/B)*x;
}
int main()
{
scanf("%lld%lld%lld",&p,&k,&a);
if(!a)
{
printf("1\n0");
return 0;
}
ll m=p-1;
for(int i=2;1ll*i*i<=m;i++)
{
if(m%i==0)
{
prime[++tot]=i;
while(m%i==0)
{
m/=i;
}
}
}
if(m!=1)
{
prime[++tot]=m;
}
for(int i=2;i<=p-1;i++)
{
bool flag=true;
for(int j=1;j<=tot;j++)
{
if(quick(i,(p-1)/prime[j])==1)
{
flag=false;
break;
}
}
if(flag)
{
g=i;
break;
}
}
int n=ceil(sqrt(p));
ll sum=1ll;
for(int i=1;i<=n;i++)
{
(sum*=g)%=p;
b[sum]=i;
}
ll num=1ll;
for(int i=0;i<=n;i++)
{
ll inv=quick(num,p-2);
if(b[inv*a%p])
{
f=i*n+b[inv*a%p];
break;
}
(num*=sum)%=p;
}
ll d=gcd(k,p-1);
if(f%d)
{
printf("0");
return 0;
}
f/=d;
ll X=k/d;
ll Y=(p-1)/d;
ll x,y;
exgcd(X,Y,x,y);
(x*=f)%=(p-1);
x%=Y;
if(x<=0)
{
x+=Y;
}
while(x<=p-1)
{
q[++cnt]=quick(g,x);
x+=Y;
}
sort(q+1,q+1+cnt);
printf("%d\n",cnt);
for(int i=1;i<=cnt;i++)
{
printf("%lld\n",q[i]);
}
}