[LintCode] Segment Tree Build & Segment Tree Build II

Segment Tree Build I

Problem

The structure of Segment Tree is a binary tree which each node has two attributes start and end denote an segment / interval.

start and end are both integers, they should be assigned in following rules:

The root's start and end is given by build method.
The left child of node A has start=A.left, end=(A.left + A.right) / 2.
The right child of node A has start=(A.left + A.right) / 2 + 1, end=A.right.
if start equals to end, there will be no children for this node.
Implement a build method with two parameters start and end, so that we can create a corresponding segment tree with every node has the correct start and end value, return the root of this segment tree.

Example

Given start=0, end=3. The segment tree will be:

               [0,  3]
             /        \
      [0,  1]           [2, 3]
      /     \           /     \
   [0, 0]  [1, 1]     [2, 2]  [3, 3]

Given start=1, end=6. The segment tree will be:

      

               [1,  6]
             /        \
      [1,  3]           [4,  6]
      /     \           /     \
   [1, 2]  [3,3]     [4, 5]   [6,6]
   /    \           /     \
[1,1]   [2,2]     [4,4]   [5,5]


Clarification

Segment Tree (a.k.a Interval Tree) is an advanced data structure which can support queries like:
which of these intervals contain a given point
which of these points are in a given interval
See wiki:
Segment Tree
Interval Tree

Solution

public class Solution {
    public SegmentTreeNode build(int start, int end) {
        // write your code here
        if (start > end) {
            return null;
        }
        SegmentTreeNode root = new SegmentTreeNode(start, end);
        if (start == end) {
            return root;
        }
        root.left = build(start, (start+end)/2);
        root.right = build((start+end)/2+1, end);
        return root;
    }
}

Segment Tree Build II

Difference

  • Definition of SegmentTreeNode:

    public class SegmentTreeNode {

         public int start, end, max;
         public SegmentTreeNode left, right;
         public SegmentTreeNode(int start, int end, int max) {
             this.start = start;
             this.end = end;
             this.max = max
             this.left = this.right = null;
         }
     }
     
    

Example

Given [3,2,1,4]. The segment tree will be:

                 [0,  3] (max = 4)
                  /            \
        [0,  1] (max = 3)     [2, 3]  (max = 4)
        /        \               /             \
[0, 0](max = 3)  [1, 1](max = 2)[2, 2](max = 1) [3, 3] (max = 4)

Note

唯一需要注意的就是max的赋值:取左右子树的max的较大值,最后一层的独立结点的max为对应数组中的值。

Solution

public class Solution {
    public SegmentTreeNode build(int[] A) {
        // write your code here
        return build(A, 0, A.length - 1);
    }
    public SegmentTreeNode build(int[] A, int start, int end) {
        if (start > end) {
            return null;
        }
        SegmentTreeNode root = new SegmentTreeNode(start, end, Integer.MIN_VALUE);
        if (start != end) {
            int mid = (start + end) / 2;
            root.left = build(A, start, mid);
            root.right = build(A, mid+1, end);
            root.max = Math.max(root.left.max, root.right.max);
        }
        else root.max = A[end];
        return root;
    }
}
ModuleNotFoundError Traceback (most recent call last) Cell In[1], line 10 8 from tensorflow.keras.preprocessing.image import load_img 9 from importlib import reload ---> 10 import segmenteverygrain as seg 11 from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor 12 from tqdm import trange File ~\segmenteverygrain-main\segmenteverygrain\segmenteverygrain.py:42 39 from tensorflow.keras.optimizers import Adam 40 from tensorflow.keras.preprocessing.image import load_img ---> 42 from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor 44 def predict_image_tile(im_tile,model): 45 if len(np.shape(im_tile)) == 2: File D:\Anaconda\lib\site-packages\segment_anything\__init__.py:14 1 # Copyright (c) Meta Platforms, Inc. and affiliates. 2 # All rights reserved. 3 4 # This source code is licensed under the license found in the 5 # LICENSE file in the root directory of this source tree. 7 from .build_sam import ( 8 build_sam, 9 build_sam_vit_h, (...) 12 sam_model_registry, 13 ) ---> 14 from .predictor import SamPredictor 15 from .automatic_mask_generator import SamAutomaticMaskGenerator File D:\Anaconda\lib\site-packages\segment_anything\predictor.py:14 10 from segment_anything.modeling import Sam 12 from typing import Optional, Tuple ---> 14 from .utils.transforms import ResizeLongestSide 17 class SamPredictor: 18 def __init__( 19 self, 20 sam_model: Sam, 21 ) -> None: File D:\Anaconda\lib\site-packages\segment_anything\utils\transforms.py:10 8 import torch 9 from torch.nn import functional as F ---> 10 from torchvision.transforms.functional import resize, to_pil_image # type: ignore 12 from copy import deepcopy 13 from typing import Tuple ModuleNotFoundError: No module named 'torchvision'
07-13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值