不等式证明的那些事【待整理】

不等式证明中的角度或者考向

一、用不等式性质考查不等式的证明

【例题】

二、数列中的不等式证明,常涉及裂项法和简单的放缩法

1、先求和后放缩的证明模式,高考考查的重点

Cnblogs_LT02.bmp$\fbox{例1}$【2017全国卷2,理科第15题高考真题改编】
已知等差数列 $\{a_n\}$的前$n$项和为$S_n$,$a_3=3,S_4=10$,证明$\sum\limits_{k=1}^n{ \cfrac{1}{S_k}}<2$ 分析:由$a_1+2d=3$和$4a_1+6d=10$, 容易计算出$a_n=n$,故$S_n=\cfrac{n(n+1)}{2}$, 则有$\cfrac{1}{S_n}=\cfrac{2}{n(n+1)}=2(\cfrac{1}{n}-\cfrac{1}{n+1})$, 故$\sum\limits_{k=1}^n {\cfrac{1}{S_k}}=2[(1-\cfrac{1}{2})+(\cfrac{1}{2}-\cfrac{1}{3})+\cdots +(\cfrac{1}{n}-\cfrac{1}{n+1})]$ $=2(1-\cfrac{1}{n+1})<2$。 解后反思: 1、本题目需要先利用裂项法求和,再利用放缩法证明不等式; 2、这类题目的求和方法常常和裂项相消法关联; 3、利用的放缩原理比如$2-a<2(a>0)$或$2+a>2(a>0)$,相对比较简单。

2、先放缩后求和的证明模式,高考考查的次重点

Cnblogs_LT02.bmp$\fbox{例2}$【改编】
设数列$\{a_n\}$的通项公式为$a_n=\cfrac{1}{2^n-1}$,前$n$项和为$S_n$,求证$S_n<2$; 证明:由于$2^n-1\ge 2^{n-1}$(当$n=1$时取等号,其他都取大于号) 故$\cfrac{1}{2^n}\leq \cfrac{1}{2^{n-1}}$(当$n=1$时取等号,其他都取大于号) 即$a_1=1$, $a_2 $a_3 $\cdots$ $a_n 故$S_n=a_1+a_2+\cdots+a_n$ $<1+\cfrac{1}{2^1} + \cfrac{1}{2^2}+\cdots+\cfrac{1}{2^{n-1}} $ $=\cfrac{1\cdot(1-\cfrac{1}{2^n})}{1-\cfrac{1}{2}}$ $=2(1-\cfrac{1}{2^n})<2$ 即$S_n<2$。 解后反思: 1、本题目需要先将每一项恰当放缩,然后利用等比数列求和公式求和,再利用放缩法证明不等式; 2、这类题目的难点在于第一步,到底怎样的放缩是恰当的,这需要一定的数学素养; 3、常用的放缩公式有(相对比较复杂): ①$\cfrac{1}{2^n-1}\leq \cfrac{1}{2^{n-1}}$; ② $ n(n-1) < n^2 < n(n+1)$或者$ \cfrac{1}{n(n-1)} > \cfrac{1}{n^2} > \cfrac{1}{n(n+1)}$; $\cfrac{1}{n-1}-\cfrac{1}{n}=\cfrac{1}{n(n-1)}>\cfrac{1}{n^2}>\cfrac{1}{n(n+1)}=\cfrac{1}{n}-\cfrac{1}{n+1}$ ③$\cfrac{1}{n^2} ④$2(\sqrt{n+1}-\sqrt{n}) ⑤利用$(1+x)^n$的二项展开式进行放缩。

三、函数与导数中的证明,常涉及作差构造函数或变形后构造函数,或放缩法或数学归纳法证明,最难的情形

Cnblogs_LT02.bmp$\fbox{例3-1}$已知函数$f(x)=ax-1-lnx(a\in R)$ (1)讨论函数$f(x)$的单调性。 (2)当$x>y>e-1$时,证明不等式$e^x\cdot ln(1+y)>e^y\cdot ln(1+x)$ 分析:(1)定义域为$(0,+\infty)$,又$f'(x)=a-\cfrac{1}{x}=\cfrac{ax-1}{x}$, 由于分母为正,故只针对分子$ax-1$分类讨论, 当$a\leq 0$时,$ax-1<0$,即$f'(x)<0$,故在$(0,+\infty)$上单调递减; 当$a>0$时,令$ax-1=0$,得到$x=\cfrac{1}{a}$, 故在$(0,\cfrac{1}{a})$上单调递减,在$(\cfrac{1}{a},+\infty)$上单调递增。 (2)将欲证明结论 $e^x\cdot ln(1+y)>e^y\cdot ln(1+x)$变形为$\cfrac{ln(1+y)}{e^y}>\cfrac{ln(1+x)}{e^x}$, 题目转化为由$x>y>e-1$时,证明$\cfrac{ln(1+y)}{e^y}>\cfrac{ln(1+x)}{e^x}$, 故我们构造函数$g(x)=\cfrac{ln(1+x)}{e^x}$, 这样命题转化为当$x>y>e-1$时,$g(y)>g(x)$, 故只需要证明函数$g(x)$在$(e-1,+\infty)$上单调递减即可。 以下用导数证明。 $g'(x)=\cfrac{\cfrac{1}{x+1}\cdot e^x-ln(x+1)\cdot e^x}{(e^x)^2}=\cfrac{\cfrac{1}{x+1}-ln(x+1)}{e^x}$, 令$h(x)=\cfrac{1}{x+1}-ln(x+1)$, 则$h'(x)=-\cfrac{1}{(x+1)^2}-\cfrac{1}{x+1}=-\cfrac{x+2}{(1+x)^2}$, 当$x>e-1$时,很显然$h'(x)<0$; 故函数$h(x)$在$(e-1,+\infty)$上单调递减, 故$h(x) 故导函数$g'(x)=\cfrac{h(x)}{e^x}<0$在$(e-1,+\infty)$上恒成立, 故函数$g(x)$在$(e-1,+\infty)$上单调递减, 证毕。 Cnblogs_LT02.bmp$\fbox{例3-2}$(2016山东青岛一模) 已知函数$f(x)=sinx-ax$, (1)对于$x\in(0,1)$,$f'(x)>0$恒成立,求实数$a$的取值范围。 分析:利用$cosx-a >0$在$x\in(0,1)$恒成立,可以求得$a < cos1$。 (2)当$a=1$时,令$h(x)=f(x)-sinx+lnx+1$,求$h(x)$的最大值。 分析:此时$h(x)=lnx-x+1$,如果能知道结论$lnx\leq x-1$, 即可知$h(x)_{max}=h(1)=0$。或利用导数也可以求得$h(x)_{max}=h(1)=0$。 (3)求证:$ln(n+1)<1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{n}(n\in N^*)$。 分析:看到这样的不等式关系,我们应该想到的有裂项相消法、数学归纳法, 法1、由(2)的结论$lnx \leq x-1$得到$ln(x+1)\leq x(x\neq 0)$, 若将其延伸到自然数,则有$ln(n+1)< n$,再做代换, 用$\cfrac{1}{n}$替换$n$,变形得到$ln(\cfrac{1}{n}+1) 即$ln(\cfrac{n+1}{n})=ln(n+1)-lnn 令此式中的$n$分别取$1,2,3,\cdots,n$,即得到以下$n$个表达式: $ln\cfrac{2}{1}<1$;即$ln2-ln1<1$ $ln\cfrac{3}{2} $ln\cfrac{4}{3} $\cdots$;$\cdots$; $ln\cfrac{1+n}{n} $ln(n+1)-ln1<1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{n}$, 即$ln(n+1)<1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots+\cfrac{1}{n}(n\in N^*)$。 Cnblogs_LT02.bmp$\fbox{例3-3}$ 求证:$(1+\cfrac{1}{3})\cdot (1+\cfrac{1}{3^2})\cdot(1+\cfrac{1}{3^3})\cdots (1+\cfrac{1}{3^n})<2$。 证明:先用导数证明$e^x\ge x+1$,再做代换,用$\cfrac{1}{3^n}$替换$x$, 得到$e^{\frac{1}{3^{\;n}}}>\cfrac{1}{3^n}+1$; 即$1+\cfrac{1}{3^n}< e^{\cfrac{1}{3^n}}$; 故$(1+\cfrac{1}{3})\cdot (1+\cfrac{1}{3^2})\cdot(1+\cfrac{1}{3^3})\cdots (1+\cfrac{1}{3^{\;n}})$ $< e^{\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\dots+\frac{1}{3^{\;n}}}$ $=e^{\cfrac{\frac{1}{3}\cdot[1-(\frac{1}{3})^\;n]}{1-\frac{1}{3}}}$ $=e^{\cfrac{1}{2}(1-\cfrac{1}{3^{\;n}})}< e^{\cfrac{1}{2}}=\sqrt{e} 故得证。 Cnblogs_LT02.bmp$\fbox{例3-4}$ 如已知$x_1>x_2>0$,证明$ln(\cfrac{x_1}{x_2})>2\cfrac{x_1-x_2}{x_1+x_2}$. 分析:令$\cfrac{x_1}{x_2}=t$,则$t>1$; $ln(\cfrac{x_1}{x_2})>2\cfrac{x_1-x_2}{x_1+x_2}$等价于$lnt>2\cfrac{t-1}{t+1}$; 然后作差构造函数$g(t)=lnt-2\cfrac{t-1}{t+1}$,想办法证明$g(t)>0$恒成立即可。 解析:$g'(t)=\cfrac{1}{t}-2\cfrac{1\cdot(t+1)-(t-1)\cdot 1}{(t+1)^2}=\cfrac{1}{t}-\cfrac{4}{(t+1)^2}=\cfrac{(t-1)^2}{t(t+1)^2}\ge 0$ 故函数$g(x)$在区间$(1,+\infty)$上单调递增, $g(x)_{min}\rightarrow g(1)=0$, 故$g(x)>0$在区间$(1,+\infty)$上恒成立, 故原命题得证。 Cnblogs_LT02.bmp$\fbox{例3-5}$【2018高考一卷第21题】 №.21 【题文】 函数$f(x)=a\cdot e^x-lnx-1$, (1)、设$x=2$是$f(x)$的极值点,求$a$,并求$f(x)$的单调区间。 【解析】$f'(x)=ae^x-\cfrac{1}{x}$,由$f'(x)=0$,解得$a=\cfrac{1}{2e^2}$; 即$f(x)=\cfrac{e^x}{2e^2}-lnx-1$; 下面求单调区间,定义域是$(0,+\infty)$, 【法1】:$f'(x)=\cfrac{e^x}{2e^2}-\cfrac{1}{x}=\cfrac{1}{2e^2}\cdot \cfrac{xe^x-2e^2}{x}$ 到此,结合题目给定的$f'(2)=0$,猜想验证,写出结果, 当$0< x <2$时,$f'(x )<0$,当$x >2$时,$f'(x) >0$, 故单调递减区间是$(0,2)$,单调递增区间是$(2,+\infty)$; 【法2】:令$f'(x)>0$,即$\cfrac{e^x}{2e^2}>\cfrac{1}{x}$,即$xe^x-2e^2>0$,观察可得,$x >2$ 同理,令$f'(x)<0$,可得$0< x < 2$, 故单调递减区间是$(0,2)$,单调递增区间是$(2,+\infty)$; (2)、证明$a\ge \cfrac{1}{e}$时,$f(x)\ge 0$。 【法1】: 已知题目$a\ge \cfrac{1}{e}$是$f(x)\ge 0$的充分条件,转化为求$f(x)\ge 0$恒成立时,求解$a$的取值范围,即必要条件。 由题目$f(x)\ge 0$可知,$ae^x-lnx-1 \ge 0$,即$ae^x\ge lnx+1$, 分离参数得到$a\ge \cfrac{lnx+1}{e^x}$恒成立, 令$h(x)= \cfrac{lnx+1}{e^x}$,只需要求得$h(x)_{max}$, $h'(x)=\cfrac{\cfrac{1}{x}e^x-(lnx+1)e^x}{(e^x)^2}=\cfrac{\cfrac{1}{x}-lnx-1}{e^x}$ $=\cfrac{1}{e^x}\cdot \cfrac{1-x-x\cdot lnx}{x}$ 说明:此时有一个很实用的数学常识,当表达式中含有$lnx$时常常用$x=1$来尝试寻找分点。比如此题中$h'(1)=0$ 然后分$(0,1)$和$(1,+\infty)$两段上分别尝试判断其正负,从而得到 当$0< x <1$时,$h'(x)>0$,$h(x)$单调递增, 当$x >1$时,$h'(x)<0$,$h(x)$单调递减, 故$x=1$时,函数$h(x)_{max}=h(1)=\cfrac{1}{e}$, 故$a\ge \cfrac{1}{e}$时,$f(x)\ge 0$。 小结:1、本题转而求$f'(x)\ge 0$的必要条件。 2、注意含有$lnx$或$ln(x+1)$的表达式的分点的尝试,其实质是数学中的观察法。 【法2】:分析,当$a\ge \cfrac{1}{e}$时,$f(x)\ge \cfrac{e^x}{e}-lnx-1=g(x)$,只需要说明$g(x)_{min}\ge 0$即可。 当$a\ge \cfrac{1}{e}$时,$f(x)\ge \cfrac{e^x}{e}-lnx-1$, 设$g(x)=\cfrac{e^x}{e}-lnx-1$,则$g'(x)=\cfrac{e^x}{e}-\cfrac{1}{x}=\cfrac{1}{e}\cdot \cfrac{xe^x-1\cdot e^1}{x}$, 故用观察法容易得到 $0< x <1$时,$g'(x)<0$,$x > 1$时,$g'(x)>0$, 即$x=1$是函数$g(x)$的最小值,则$x>0$时,$g(x)\ge g(1)=0$, 故$a\ge \cfrac{1}{e}$时,$f(x)\ge 0$。

四、用二项式定理证明不等式

已知$S_n=C_n^1+3C_n^2+9C_n^3+\cdots+3^{n-1}C_n^n$,求证:$S_n 分析:$3S_n=3C_n^1+3^2C_n^2+3^3C_n^3+\cdots+3^nC_n^n$, $3S_n+1=C_n^0+3C_n^1+3^2C_n^2+3^3C_n^3+\cdots+3^nC_n^n=(1+3)^n$, $3S_n=(1+3)^n-1$,$S_n=\cfrac{4^n-1}{3}

五、数学归纳法证明不等式

【例题】

六、不等式选讲中用绝对值不等式或柯西不等式证明

【例题】

转载于:https://www.cnblogs.com/wanghai0666/p/8845923.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值