Business Scenario

本文介绍mySAP.com如何实现端到端的协作业务过程,支持互联网并包含必要的技巧与内容来执行业务场景。SAP通过mySAP.com创建了一系列新的、协作的、互联网启用的业务场景及其相关功能和服务。

End-to-end collaborative business processes that can also leverage the Internet and include the content and know-how necessary to execute the business scenario. With mySAP.com, SAP creates a comprehensive series of new, collaborative, Internet-enabled business scenarios and corresponding functionality, content, and service. The know-how, such as help and guidance for example, and the content, such as D information for example, required for the execution of the business scenarios is included.

----------------------
分隔线上面是 SAP 标准文档中提供的说明
分隔线下面是我的翻译
----------------------
端到端的协作业务过程还可以支持互联网,包含内容,以及执行业务场景的必要技巧。使用 mySAP.com,SAP 创建了一系列全面的、新的、协作的、允许互联网的业务场景,以及相应的功能、内容以及服务。其中的技巧包括帮助和指导等,而内容则包括 D 信息——它是业务场景执行时所需要的。

转载于:https://www.cnblogs.com/qiangsheng/archive/2008/01/12/1035980.html

内容概要:本文主要介绍了一项基于Pytorch框架搭建神经网络的研究【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)工作,重点实现了DQN算法、优先级采样的DQN算法以及结合人工势场法的DQN算法在避障控制中的应用。研究通过Matlab和Python平台进行仿真与实验,旨在提升智能体在复杂环境中的自主避障能力。文中详细阐述了三种算法的设计思路、网络结构搭建、训练流程及优化策略,并通过对比实验验证了各方法的有效性与性能差异,尤其突出了DQN结合人工势场法在引导智能体快速学习安全路径方面的优势。此外,文档还列举了大量相关的科研方向与技术应用案例,涵盖无人机控制、路径规划、强化学习、电力系统优化等多个领域,展示了广泛的科研服务能力和技术积累。; 适合人群:具备一定Python和深度学习基础,熟悉强化学习基本概念的研究生、科研人员及工程技术人员;对智能控制、机器人避障、无人机路径规划等领域感兴趣的开发者。; 使用场景及目标:① 学习DQN及其改进算法(如优先经验回放)在实际控制系统中的实现方式;② 掌握如何将传统人工势场法与深度强化学习相结合以提升避障性能;③ 借鉴Matlab与Python混合仿真方法,开展智能控制算法的实验验证与对比分析;④ 拓展至无人机、无人车等智能体的自主导航系统设计。; 阅读建议:建议读者结合提供的代码资源,逐步复现实验过程,重点关注神经网络结构设计、奖励函数设定及算法收敛性分析。同时可参考文中列出的其他研究方向,拓展应用场景,提升科研创新能力。
内容【2025最新高维多目标优化】无人机三维路径规划的导航变量的多目标粒子群优化算法NMOPSO研究(Matlab代码实现)概要:本文围绕“2025最新高维多目标优化”主题,重点研究基于城市场景下无人机三维路径规划的导航变量多目标粒子群优化算法NMOPSO,并提供了完整的Matlab代码实现。该研究旨在解决复杂威胁环境下无人机路径规划中的多目标优化问题,兼顾路径安全性、能耗、距离与时效等多个目标,通过改进的粒子群算法实现高效搜索与优化。文中详细阐述了算法设计思路、数学建模过程、适应度函数构建及约束处理机制,并结合三维城市环境进行仿真实验验证其有效性。此外,文档还列举了大量相关科研方向与技术资源,涵盖智能优化算法、路径规划、无人机控制、机器学习、电力系统等多个领域,展示了广泛的科研应用场景和技术支持体系。; 适合人群:具备一定Matlab编程基础,从事无人机路径规划、智能优化算法或自动化控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究高维多目标优化算法在无人机三维路径规划中的应用;②掌握多目标粒子群优化算法(MOPSO/NMOPSO)的设计与实现方法;③复现并改进复杂环境下的无人机协同路径规划模型;④拓展至其他智能优化与控制问题的研究与仿真。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注算法核心模块的实现细节,如种群初始化、非支配排序、拥挤度计算与动态环境建模。同时可参考文中列出的其他研究案例,拓展技术视野,推动算法在实际科研项目中的迁移与应用。
### Handling Multiple Scenarios in Software Development Managing multiple scenarios is a common challenge in software development, especially when dealing with complex systems that must support diverse use cases, configurations, or environmental conditions. Effective handling of these scenarios requires robust architectural design, modular code organization, and the application of modern development practices. One approach involves designing flexible and scalable architectures that can accommodate various inputs, configurations, or workflows. This often includes the use of design patterns such as Strategy, Factory, or State, which allow for dynamic behavior selection at runtime based on the scenario context[^1]. For instance, in a system that processes different types of transactions (e.g., credit card, cryptocurrency, bank transfer), each transaction type can be encapsulated into its own class implementing a common interface. Another key aspect is test-driven development (TDD) and automated testing strategies. By writing tests that simulate different scenarios early in the development process, developers can ensure that their solutions are resilient and behave correctly under expected and edge-case conditions. Continuous integration and delivery pipelines further support this by enabling rapid feedback and regression detection[^1]. In some domains like automotive simulation or energy systems, scenario-based testing becomes even more critical. Systems may need to handle extreme operating conditions such as overvoltage, overheating, or invalid input states. In such environments, specialized platforms and tools are used to define and execute test scenarios programmatically, ensuring that all possible conditions are covered without physical risk[^2]. A practical implementation might involve using configuration files or rule engines to define scenario parameters externally. This allows non-developers (such as QA engineers or domain experts) to modify test cases or business rules without changing the core codebase: ```json { "scenarios": [ { "name": "Overcharge Protection", "parameters": { "voltage": 5.5, "temperature": 45, "expected_result": "shutdown" } }, { "name": "Normal Operation", "parameters": { "voltage": 4.2, "temperature": 25, "expected_result": "continue" } } ] } ``` Developers can then write generic test runners or scenario processors that iterate through these definitions and invoke appropriate logic or assertions. Moreover, leveraging containerization and infrastructure-as-code techniques enables teams to spin up isolated environments for each scenario automatically. Tools like Docker and Kubernetes allow for consistent deployment targets regardless of the underlying infrastructure, while CI/CD pipelines orchestrate the execution of multiple test suites across different configurations. ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值