HDU 6166 Senior Pan(多校第九场 二进制分组最短路)

题意:给出n个点和m条有向边(有向边!!!!我还以为是无向查了半天),然后给出K个点,问这k个点中最近的两点的距离

 

思路:比赛时以为有询问,就直接丢了,然后这题感觉思路很棒,加入把所有点分成起点和终点两部分,然后加个S点和T点与他们

的距离为0,然后跑最短路就可以了,但是这样有可能最近的两个点都在起点或者都在终点,那么就不一定是最短的,所以就有个二进制分组。

考虑每个点的编号的二进制表示,那么对于任何两个点,他们至少有一位二进制不同,那么我们通过枚举二进制的位,当前位为1的作为起点集合,

当前位为2的作为终点集合,通过这样分组,我们就可以确定至少有一次分组任意两点分别在起点和终点。

复杂度O(20*nlogm)

代码:

/** @xigua */
#include <cstdio>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <vector>
#include <stack>
#include <cstring>
#include <queue>
#include <set>
#include <string>
#include <map>
#include <climits>
#define PI acos(-1)
using namespace std;
typedef long long ll;
typedef double db;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
const int INF = 1e8 + 5;
const ll inf = 1e15 + 5;
const db eps = 1e-5;
int cnt, head[maxn]; ll dis[maxn];
struct Edge {
    int v, next; ll w; //记住这里改顺序下面push进队一定要改!
    bool operator < (const Edge &rhs) const {
        return w > rhs.w;
    }
} e[maxn<<2];

void add(int u, int v, int co) {
    e[cnt].v = v;
    e[cnt].w = co;
    e[cnt].next = head[u];
    head[u] = cnt++;
}

void init() {
    cnt = 0;
    memset(head, -1, sizeof(head));
}

void dij(int s, int len) {
    priority_queue<Edge> pq;
    for (int i = 1; i <= len; i++)
        dis[i] = inf;
    bool vis[maxn] = {0};
    dis[s] = 0;
    pq.push((Edge){s, 0, 0});
    while (!pq.empty()) {
        Edge tmp = pq.top(); pq.pop();
        if (vis[tmp.v]) continue;
        vis[tmp.v] = 1;
        for (int i = head[tmp.v]; ~i; i = e[i].next) {
            Edge u = e[i];
            if (dis[u.v] > dis[tmp.v] + u.w) {
                dis[u.v] = dis[tmp.v] + u.w;
                pq.push((Edge){u.v, 0, dis[u.v]});
            }
        }
    }
}
int a[maxn];
int u[maxn], v[maxn], w[maxn];

void solve() {
    int n, m; cin >> n >> m;
    for (int i = 1; i <= m; i++) {
        scanf("%d%d%d", u + i, v + i, w + i);
    }
    int k; cin >> k;
    for (int i = 1; i <= k; i++) {
        scanf("%d", a + i);
    }
    ll ans = inf;
    for (int i = 0; i < 20; i++) {
        init();
        for (int j = 1; j <= m; j++) {
            add(u[j], v[j], w[j]);
           // add(v[j], u[j], w[j]);
        }
        for (int j = 1; j <= k; j++) {
            if ((1<<i) & j) {
                add(0, a[j], 0);
            }
            else {
                add(a[j], n+1, 0);
            }
        }
        dij(0, n + 10);
        ans = min(ans, dis[n+1]);
        init();
        for (int j = 1; j <= m; j++) {
            add(u[j], v[j], w[j]);
           // add(v[j], u[j], w[j]);
        }
        for (int j = 1; j <= k; j++) {
            if (((1<<i) & j) == 0) {
                add(0, a[j], 0);
            }
            else {
                add(a[j], n+1, 0);
            }
        }
        dij(0, n + 10);
        ans = min(ans, dis[n+1]);
    }
    cout << ans << endl;
}

int main() {
    int t = 1, cas = 1;
   // freopen("in.txt", "r", stdin);
   // freopen("in.txt", "w", stdout);
   // init();
    scanf("%d", &t);
    while(t--) {
        printf("Case #%d: ", cas++);
        solve();
    }
    return 0;
}

  

转载于:https://www.cnblogs.com/ost-xg/p/7417862.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值