探讨微博时间流的实现

微博feed系统的推(push)模式和拉(pull)模式实现timeline

推拉结合

推数据和拉数据都有什么优缺点?在用户的信息流中,推数据的实现其实更简单。姚晨发了条微博,只需要取出姚晨粉丝的信息流,依次推给粉丝就OK了。拉数据的逻辑实现就非常复杂,需要获取所有我关注用户的动态,并对其进行整合,每次刷新、或者加载更多需要判断的逻辑就更多。

姚晨粉丝1000万,如果有1000万个姚晨同时更新了一条动态,数据要推到什么时候?假设这个情况真的发生了,那么首先肯定这是一个并行的操作,其次网络以及缓存那么快,再加上一些算法优化,我相信超过不了5分钟吧。而且给所有粉丝推数据也是不现实的。

为什么不是给所有姚晨的粉丝推数据?假设用户A关注了姚晨之后就再也没有玩过微博,在有限的内存空间维护用户A的信息流会变得毫无意义。所以推的对象应该是活跃的用户,或者是当天的在线用户。

用户信息流(Feed)构建

数据存储基于Redis的ZSet数据结构。ZSet优势非常明显:自动排序。信息流按照时间排序正是利用了这一点。为什么不考虑使用List,最基本的一点就是取消关注用户A(或者用户A删除了刚刚发的动态)之后,删除粉丝信息流中A的动态变得非常困难:一个可怕的遍历操作。

用户信息流该怎么创建?APP端用户对信息流有两个基本操作,下拉刷新和上拉加载更多。对于活跃用户,他的信息流都是推过来的,每时每刻都是最新的,所以只考虑数据显示逻辑就OK了。对于不活跃的怎么处理了,这个分支有点多?

如果用户A消失一周之后又想看姚晨的状态,怎么办?很显然用户A一下由僵尸粉变成了活跃粉,Redis里没有他任何的信息流数据(因为他消失的时间太久了),信息流需要完全重建。我们首先获取他关注的所有用户,假设为用户群B。筛选用户群B中今日更新动态的用户,然后合并信息流,依次类推。

如果用户A消失2天之后又想看姚晨的状态,此时系统已经停止了对他的实时推送,但是他的信息流却依然存在,只是缺少了(他的信息流中)最早动态时间到当前时间这段间隔的动态。重构该期间的动态。
综上所述:停止信息流实时更新的时间间隔、信息流过期时间、用户最后一次更新动态的时间都是需要认真权衡的。

区分冷热数据

冷数据、温数据和热数据。冷数据——性别、兴趣、常住地、职业、年龄等数据画像,表征“这是什么样的人”;温数据——近期活跃应用、近期去过的地方等具有一定时效性的行为数据,表征“最近对什么感兴趣”;热数据——当前地点、打开的应用等场景化明显的、稍纵即逝的营销机会,表征“正在哪里干什么”。

如何定义活跃用户?基本上的答案都是:具体要看这个产品是什么类型的。我觉得用户产生行为是根据产品来定义的:比如网易云阅读(阅读类的),用户只要看了某本书的目录、看了作者简介,下载阅读了,都算是活跃;用户去做了一些设置,例如换头像,或者是完善个人信息,这些也都是可以算的。再比如映客(直播类的),用户只要打开看了某段视频,搜索了某些关键词,给某个视频评论点赞了,也都算是活跃。所以确实产品不同,定义维度也不同,回归到产品战略上,用户发生的这些行为是不是产品设计时想要的,用户哪些参与行为是有效的,那么,有效的这些行为往往都是属于活跃行为。

也就是区分活跃用户和不活跃用户。活跃用户的几个属性:

  1. 用户最后一次发帖的时间
  2. 用户最后一次登录的时间
  3. 用户只查看不发帖
  4. 用户今天是否在线

如何衡量用户今日是否在线?需要找一个定义标准:用户今日浏览过、或者用户今日登陆过。本质上说就是找到一个:用户今日有过与APP交互的动作。

总结:

文中信息流和时间流混用,但是表示的是同一个意思。简单介绍了我对时间流的看法(只是我个人的认识,不知道微博具体是如何实现的)。大家认真看完了的话,就赶紧评论互喷起来吧。

文章为原创,转载请注明链接地址。觉得有帮助的话,不妨打个赏吧!
打赏

参考文章:

1. 冷数据、温数据、热数据,难道数据也是有温度的?
2. 浅谈如何定义活跃用户

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值