Binarytree: Python Library for Studying Binary Trees
Introduction
Are you studying binary trees for your next exam, assignment or technical interview?
Binarytree is a Python library which provides a simple API to generate, visualize, inspect and manipulate binary trees. It allows you to skip the tedious work of setting up test data, and dive straight into practising your algorithms. Heaps and BSTs (binary search trees) are also supported.
Announcements
Requirements
- Python 2.7, 3.4, 3.5 or 3.6.
Installation
To install a stable version from PyPi:
~$ pip install binarytree
To install the latest version directly from GitHub:
~$ pip install -e git+git@github.com:joowani/binarytree.git@master#egg=binarytree
You may need to use sudo
depending on your environment.
Getting Started
By default, binarytree uses the following class to represent a node:
class Node(object):
def __init__(self, value, left=None, right=None):
self.value = value # The node value
self.left = left # Left child
self.right = right # Right child
Generate and pretty-print various types of binary trees:
>>> from binarytree import tree, bst, heap >>> >>> # Generate a random binary tree and return its root node >>> my_tree = tree(height=3, is_perfect=False) >>> >>> # Generate a random BST and return its root node >>> my_bst = bst(height=3, is_perfect=True) >>> >>> # Generate a random max heap and return its root node >>> my_heap = heap(height=3, is_max=True, is_perfect=False) >>> >>> # Pretty-print the trees in stdout >>> print(my_tree) # # _______1_____ # / \ # 4__ ___3 # / \ / \ # 0 9 13 14 # / \ \ # 7 10 2 # >>> print(my_bst) # # ______7_______ # / \ # __3__ ___11___ # / \ / \ # 1 5 9 _13 # / \ / \ / \ / \ # 0 2 4 6 8 10 12 14 # >>> print(my_heap) # # _____14__ # / \ # ____13__ 9 # / \ / \ # 12 7 3 8 # / \ / # 0 10 6 #
Use the binarytree.Node class to build your own trees:
>>> from binarytree import Node >>> >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> root.left.right = Node(4) >>> >>> print(root) # # __1 # / \ # 2 3 # \ # 4 #
Inspect tree properties:
>>> from binarytree import Node >>> >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> root.left.left = Node(4) >>> root.left.right = Node(5) >>> >>> print(root) # # __1 # / \ # 2 3 # / \ # 4 5 # >>> root.height 2 >>> root.is_balanced True >>> root.is_bst False >>> root.is_complete True >>> root.is_max_heap False >>> root.is_min_heap True >>> root.is_perfect False >>> root.is_strict True >>> root.leaf_count 3 >>> root.max_leaf_depth 2 >>> root.max_node_value 5 >>> root.min_leaf_depth 1 >>> root.min_node_value 1 >>> root.size 5 >>> root.properties # To see all at once: {'height': 2, 'is_balanced': True, 'is_bst': False, 'is_complete': True, 'is_max_heap': False, 'is_min_heap': True, 'is_perfect': False, 'is_strict': True, 'leaf_count': 3, 'max_leaf_depth': 2, 'max_node_value': 5, 'min_leaf_depth': 1, 'min_node_value': 1, 'size': 5} >>> root.leaves [Node(3), Node(4), Node(5)] >>> root.levels [[Node(1)], [Node(2), Node(3)], [Node(4), Node(5)]]
Use level-order (breadth-first) indexes to manipulate nodes:
>>> from binarytree import Node >>> >>> root = Node(1) # index: 0, value: 1 >>> root.left = Node(2) # index: 1, value: 2 >>> root.right = Node(3) # index: 2, value: 3 >>> root.left.right = Node(4) # index: 4, value: 4 >>> root.left.right.left = Node(5) # index: 9, value: 5 >>> >>> print(root) # # ____1 # / \ # 2__ 3 # \ # 4 # / # 5 # >>> # Use binarytree.Node.pprint instead of print to display indexes >>> root.pprint(index=True) # # _________0-1_ # / \ # 1-2_____ 2-3 # \ # _4-4 # / # 9-5 # >>> # Return the node/subtree at index 9 >>> root[9] Node(5) >>> # Replace the node/subtree at index 4 >>> root[4] = Node(6, left=Node(7), right=Node(8)) >>> root.pprint(index=True) # # ______________0-1_ # / \ # 1-2_____ 2-3 # \ # _4-6_ # / \ # 9-7 10-8 # >>> # Delete the node/subtree at index 1 >>> del root[1] >>> root.pprint(index=True) # # 0-1_ # \ # 2-3
Traverse the trees using different algorithms:
>>> from binarytree import Node >>> >>> root = Node(1) >>> root.left = Node(2) >>> root.right = Node(3) >>> root.left.left = Node(4) >>> root.left.right = Node(5) >>> >>> print(root) # # __1 # / \ # 2 3 # / \ # 4 5 # >>> root.inorder [Node(4), Node(2), Node(5), Node(1), Node(3)] >>> root.preorder [Node(1), Node(2), Node(4), Node(5), Node(3)] >>> root.postorder [Node(4), Node(5), Node(2), Node(3), Node(1)] >>> root.levelorder [Node(1), Node(2), Node(3), Node(4), Node(5)] >>> list(root) # Equivalent to root.levelorder [Node(1), Node(2), Node(3), Node(4), Node(5)]
List representations are also supported:
>>> from binarytree import build >>> >>> # Build a tree from list representation >>> values = [7, 3, 2, 6, 9, None, 1, 5, 8] >>> root = build(values) >>> print(root) # # __7 # / \ # __3 2 # / \ \ # 6 9 1 # / \ # 5 8 # >>> # Convert the tree back to list representation >>> root.values [7, 3, 2, 6, 9, None, 1, 5, 8]
Check out the documentation for more details!
Contributing
Please have a look at this page before submitting a pull request. Thanks!