BinaryTree-学习二叉树的Python库

Binarytree: Python Library for Studying Binary Trees

Build Status Package Version Python Versions Test Coverage Issues Open MIT License

 

Demo GIF

Introduction

Are you studying binary trees for your next exam, assignment or technical interview?

Binarytree is a Python library which provides a simple API to generate, visualize, inspect and manipulate binary trees. It allows you to skip the tedious work of setting up test data, and dive straight into practising your algorithms. Heaps and BSTs (binary search trees) are also supported.

Announcements

  • Binarytree version 4.0 is now out!
  • Please see the releases page for details on the latest updates.

Requirements

  • Python 2.7, 3.4, 3.5 or 3.6.

Installation

To install a stable version from PyPi:

~$ pip install binarytree

To install the latest version directly from GitHub:

~$ pip install -e git+git@github.com:joowani/binarytree.git@master#egg=binarytree

You may need to use sudo depending on your environment.

Getting Started

By default, binarytree uses the following class to represent a node:

class Node(object):

    def __init__(self, value, left=None, right=None):
        self.value = value  # The node value
        self.left = left    # Left child
        self.right = right  # Right child

Generate and pretty-print various types of binary trees:

>>> from binarytree import tree, bst, heap
>>>
>>> # Generate a random binary tree and return its root node
>>> my_tree = tree(height=3, is_perfect=False)
>>>
>>> # Generate a random BST and return its root node
>>> my_bst = bst(height=3, is_perfect=True)
>>>
>>> # Generate a random max heap and return its root node
>>> my_heap = heap(height=3, is_max=True, is_perfect=False)
>>>
>>> # Pretty-print the trees in stdout
>>> print(my_tree)
#
#        _______1_____
#       /             \
#      4__          ___3
#     /   \        /    \
#    0     9      13     14
#         / \       \
#        7   10      2
#
>>> print(my_bst)
#
#            ______7_______
#           /              \
#        __3__           ___11___
#       /     \         /        \
#      1       5       9         _13
#     / \     / \     / \       /   \
#    0   2   4   6   8   10    12    14
#
>>> print(my_heap)
#
#              _____14__
#             /         \
#        ____13__        9
#       /        \      / \
#      12         7    3   8
#     /  \       /
#    0    10    6
#

Use the binarytree.Node class to build your own trees:

>>> from binarytree import Node
>>>
>>> root = Node(1)
>>> root.left = Node(2)
>>> root.right = Node(3)
>>> root.left.right = Node(4)
>>>
>>> print(root)
#
#      __1
#     /   \
#    2     3
#     \
#      4
#

Inspect tree properties:

>>> from binarytree import Node
>>>
>>> root = Node(1)
>>> root.left = Node(2)
>>> root.right = Node(3)
>>> root.left.left = Node(4)
>>> root.left.right = Node(5)
>>>
>>> print(root)
#
#        __1
#       /   \
#      2     3
#     / \
#    4   5
#
>>> root.height
2
>>> root.is_balanced
True
>>> root.is_bst
False
>>> root.is_complete
True
>>> root.is_max_heap
False
>>> root.is_min_heap
True
>>> root.is_perfect
False
>>> root.is_strict
True
>>> root.leaf_count
3
>>> root.max_leaf_depth
2
>>> root.max_node_value
5
>>> root.min_leaf_depth
1
>>> root.min_node_value
1
>>> root.size
5

>>> root.properties  # To see all at once:
{'height': 2,
 'is_balanced': True,
 'is_bst': False,
 'is_complete': True,
 'is_max_heap': False,
 'is_min_heap': True,
 'is_perfect': False,
 'is_strict': True,
 'leaf_count': 3,
 'max_leaf_depth': 2,
 'max_node_value': 5,
 'min_leaf_depth': 1,
 'min_node_value': 1,
 'size': 5}

>>> root.leaves
[Node(3), Node(4), Node(5)]

>>> root.levels
[[Node(1)], [Node(2), Node(3)], [Node(4), Node(5)]]

Use level-order (breadth-first) indexes to manipulate nodes:

>>> from binarytree import Node
>>>
>>> root = Node(1)                  # index: 0, value: 1
>>> root.left = Node(2)             # index: 1, value: 2
>>> root.right = Node(3)            # index: 2, value: 3
>>> root.left.right = Node(4)       # index: 4, value: 4
>>> root.left.right.left = Node(5)  # index: 9, value: 5
>>>
>>> print(root)
#
#      ____1
#     /     \
#    2__     3
#       \
#        4
#       /
#      5
#
>>> # Use binarytree.Node.pprint instead of print to display indexes
>>> root.pprint(index=True)
#
#       _________0-1_
#      /             \
#    1-2_____        2-3
#            \
#           _4-4
#          /
#        9-5
#
>>> # Return the node/subtree at index 9
>>> root[9]
Node(5)

>>> # Replace the node/subtree at index 4
>>> root[4] = Node(6, left=Node(7), right=Node(8))
>>> root.pprint(index=True)
#
#       ______________0-1_
#      /                  \
#    1-2_____             2-3
#            \
#           _4-6_
#          /     \
#        9-7     10-8
#
>>> # Delete the node/subtree at index 1
>>> del root[1]
>>> root.pprint(index=True)
#
#    0-1_
#        \
#        2-3

Traverse the trees using different algorithms:

>>> from binarytree import Node
>>>
>>> root = Node(1)
>>> root.left = Node(2)
>>> root.right = Node(3)
>>> root.left.left = Node(4)
>>> root.left.right = Node(5)
>>>
>>> print(root)
#
#        __1
#       /   \
#      2     3
#     / \
#    4   5
#
>>> root.inorder
[Node(4), Node(2), Node(5), Node(1), Node(3)]

>>> root.preorder
[Node(1), Node(2), Node(4), Node(5), Node(3)]

>>> root.postorder
[Node(4), Node(5), Node(2), Node(3), Node(1)]

>>> root.levelorder
[Node(1), Node(2), Node(3), Node(4), Node(5)]

>>> list(root)  # Equivalent to root.levelorder
[Node(1), Node(2), Node(3), Node(4), Node(5)]

List representations are also supported:

>>> from binarytree import build
>>>
>>> # Build a tree from list representation
>>> values = [7, 3, 2, 6, 9, None, 1, 5, 8]
>>> root = build(values)
>>> print(root)
#
#            __7
#           /   \
#        __3     2
#       /   \     \
#      6     9     1
#     / \
#    5   8
#
>>> # Convert the tree back to list representation
>>> root.values
[7, 3, 2, 6, 9, None, 1, 5, 8]

Check out the documentation for more details!

Contributing

Please have a look at this page before submitting a pull request. Thanks!

中文翻译

转载于:https://my.oschina.net/u/2245781/blog/1841729

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值