BZOJ4912 : [Sdoi2017]天才黑客

建立新图,原图中每条边在新图中是点,点权为$w_i$,边权为两个字符串的LCP。

对字典树进行DFS,将每个点周围一圈边对应的字符串按DFS序从小到大排序。

根据后缀数组利用height数组求LCP的原理,类似地可以得到:

令$h_i=LCP(str_i,str_{i+1})$,则$LCP(str_l,str_r)=\min(h_{l..r-1})$。

枚举每个$h_i$作为分界线,那么新图中两侧的点均可以通过不超过$h_i$的代价互相访问。

建立一排前缀虚点和后缀虚点然后对应前后缀之间连边即可。

如此建图的点数和边数均为$O(m)$,时间复杂度$O(m\log m)$。

 

#include<cstdio>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
typedef pair<int,int>P;
const int N=50010,inf=~0U>>1;
int Case,n,m,K,i,j,x,y,z,g[N],nxt[N],size[N],f[N],d[N],son[N],loc[N],top[N],dfn;
int gi[N],go[N],V[N<<1],NXT[N<<1],ED;
int cnt,pi[N<<1],po[N<<1],si[N<<1],so[N<<1],cq,q[N<<1];
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
struct E{int a,b,c,d;}e[N];
namespace G{
const int N=450010,M=800010;
int g[N],v[M],w[M],nxt[M],ed,val[N],d[N];priority_queue<P,vector<P>,greater<P> >q;
inline void add(int x,int y,int z){v[++ed]=y;w[ed]=z;nxt[ed]=g[x];g[x]=ed;}
inline void ext(int x,int y){
  y+=val[x];
  if(y<d[x])q.push(P(d[x]=y,x));
}
void solve(){
  for(i=1;i<=cnt;i++)d[i]=inf;
  for(i=1;i<=m;i++)if(e[i].a==1)ext(i,0);
  while(!q.empty()){
    P t=q.top();q.pop();
    if(d[t.second]>t.first)continue;
    for(i=g[t.second];i;i=nxt[i])ext(v[i],t.first+w[i]);
  }
}
}
inline bool cmp(int x,int y){return loc[e[abs(x)].d]<loc[e[abs(y)].d];}
inline void add(int x,int y){nxt[y]=g[x];g[x]=y;}
inline void ADD(int&x,int y){V[++ED]=y;NXT[ED]=x;x=ED;}
void dfs(int x){
  size[x]=1;
  for(int i=g[x];i;i=nxt[i]){
    f[i]=x,d[i]=d[x]+1;
    dfs(i),size[x]+=size[i];
    if(size[i]>size[son[x]])son[x]=i;
  }
}
void dfs2(int x,int y){
  loc[x]=++dfn;top[x]=y;
  if(son[x])dfs2(son[x],y);
  for(int i=g[x];i;i=nxt[i])if(i!=son[x])dfs2(i,i);
}
inline int lca(int x,int y){
  for(;top[x]!=top[y];x=f[top[x]])if(d[top[x]]<d[top[y]])swap(x,y);
  return min(d[x],d[y]);
}
inline void solve(int x){
  int i;
  if(!gi[x]||!go[x])return;
  cq=0;
  for(i=gi[x];i;i=NXT[i])q[++cq]=V[i];
  for(i=go[x];i;i=NXT[i])q[++cq]=-V[i];
  sort(q+1,q+cq+1,cmp);
  for(i=1;i<=cq;i++){
    pi[i]=++cnt;
    si[i]=++cnt;
    po[i]=++cnt;
    so[i]=++cnt;
    if(i>1){
      G::add(pi[i-1],pi[i],0);
      G::add(po[i-1],po[i],0);
      G::add(si[i],si[i-1],0);
      G::add(so[i],so[i-1],0);
    }
    if(q[i]>0)G::add(q[i],pi[i],0),G::add(q[i],si[i],0);
    else q[i]*=-1,G::add(po[i],q[i],0),G::add(so[i],q[i],0);
  }
  for(i=1;i<cq;i++){
    int t=lca(e[q[i]].d,e[q[i+1]].d);
    G::add(pi[i],po[i+1],t);
    G::add(si[i+1],so[i],t);
  }
}
int main(){
  read(Case);
  while(Case--){
    read(n),read(m),read(K);
    for(i=1;i<=m;i++){
      read(e[i].a),read(e[i].b),read(e[i].c),read(e[i].d);
      ADD(gi[e[i].b],i),ADD(go[e[i].a],i);
      G::val[i]=e[i].c;
    }
    cnt=m;
    for(i=1;i<K;i++)read(x),read(y),read(z),add(x,y);
    dfs(1),dfs2(1,1);
    for(i=1;i<=n;i++)solve(i);
    G::solve();
    for(i=2;i<=n;i++){
      x=inf;
      for(j=gi[i];j;j=NXT[j])x=min(x,G::d[V[j]]);
      printf("%d\n",x);
    }
    for(i=1;i<=cnt;i++)G::g[i]=G::val[i]=0;
    for(i=1;i<=K;i++)g[i]=size[i]=f[i]=d[i]=son[i]=0;
    for(i=1;i<=n;i++)gi[i]=go[i]=0;
    ED=dfn=G::ed=0;
  }
  return 0;
}

  

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值