OpenCV进行图像相似度对比的几种办法

本文介绍了三种图像相似度对比方法:PSNR(峰值信噪比)、感知哈希算法和OpenCV中的特征点计算。通过这些方法,可以评估图像的失真程度和相似性,适用于图像检索和识别场景。
摘要由CSDN通过智能技术生成

转载请注明出处:http://blog.csdn.net/wangyaninglm/article/details/43853435
来自:shiter编写程序的艺术


这里写图片描述

对计算图像相似度的方法,本文做了如下总结,主要有三种办法:


1.PSNR峰值信噪比

PSNR(Peak Signal to Noise Ratio),一种全参考的图像质量评价指标。

简介:https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

PSNR是最普遍和使用最为广泛的一种图像客观评价指标,然而它是基于对应像素点间的误差,即基于误差敏感的图像质量评价。由于并未考虑到人眼的视觉特性(人眼对空间频率较低的对比差异敏感度较高,人眼对亮度对比差异的敏感度较色度高,人眼对一个区域的感知结果会受到其周围邻近区域的影响等),因而经常出现评价结果与人的主观感觉不一致的情况。

SSIM(structural similarity)结构相似性,也是一种全参考的图像质量评价指标,它分别从亮度、对比度、结构三方面度量图像相似性。

这里写图片描述

SSIM取值范围[0,1],值越大,表示图像失真越小.

在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性MSSIM:


参考资料

[1] 峰值信噪比-维基百科

[2] 王宇庆,刘维亚,王勇. 一种基于局部方差和结构相似度的图像质量评价方法[J]. 光电子激光,2008。
[3]http://www.cnblogs.com/vincent2012/archive/2012/10/13/2723152.html

官方文档的说明,不过是GPU版本的,我们可以修改不用gpu不然还得重新编译

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/highgui/video-input-psnr-ssim/video-input-psnr-ssim.html#videoinputpsnrmssim
http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/gpu/gpu-basics-similarity/gpu-basics-similarity.html?highlight=psnr


// PSNR.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"

#include <iostream>                   // Console I/O
#include <sstream>                    // String to number conversion

#include <opencv2/core/core.hpp>      // Basic OpenCV structures
#include <opencv2/imgproc/imgproc.hpp>// Image processing methods for the CPU
#include <opencv2/highgui/highgui.hpp>// Read images
#include <opencv2/gpu/gpu.hpp>        // GPU structures and methods

using namespace std;
using namespace cv;

double getPSNR(const Mat& I1, const Mat& I2);      // CPU versions
Scalar getMSSIM( const Mat& I1, const Mat& I2);

double getPSNR_GPU(const Mat& I1, const Mat& I2);  // Basic GPU versions
Scalar getMSSIM_GPU( const Mat& I1, const Mat& I2);

struct BufferPSNR                                     // Optimized GPU versions
{   // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
    gpu::GpuMat gI1, gI2, gs, t1,t2;

    gpu::GpuMat buf;
};
double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b);

struct BufferMSSIM                                     // Optimized GPU versions
{   // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
    gpu::GpuMat gI1, gI2, gs, t1,t2;

    gpu::GpuMat I1_2, I2_2, I1_I2;
    vector<gpu::GpuMat> vI1, vI2;

    gpu::GpuMat mu1, mu2; 
    gpu::GpuMat mu1_2, mu2_2, mu1_mu2; 

    gpu::GpuMat sigma1_2, sigma2_2, sigma12; 
    gpu::GpuMat t3; 

    gpu::GpuMat ssim_map;

    gpu::GpuMat buf;
};
Scalar getMSSIM_GPU_optimized( const Mat& i1, const Mat& i2, BufferMSSIM& b);

void help()
{
    cout
        << "\n--------------------------------------------------------------------------" << endl
        << "This program shows how to port your CPU code to GPU or write that from scratch." << endl
        << "You can see the performance improvement for the similarity check methods (PSNR and SSIM)."  << endl
        << "Usage:"                                                               << endl
        << "./gpu-basics-similarity referenceImage comparedImage numberOfTimesToRunTest(like 10)." << endl
        << "--------------------------------------------------------------------------"   << endl
        << endl;
}

int main(int argc, char *argv[])
{
    help(); 
    Mat I1 = imread("swan1.jpg",1);           // Read the two images
    Mat I2 = imread("swan2.jpg",1);

    if (!I1.data || !I2.data)           // Check for success
    {
        cout << "Couldn't read the image";
        return 0;
    }

    BufferPSNR bufferPSNR;
    BufferMSSIM bufferMSSIM;

    int TIMES; 
    stringstream sstr("500"); 
    sstr >> TIMES;
    double time, result;

    //------------------------------- PSNR CPU ----------------------------------------------------
    time = (double)getTickCount();    

    for (int i = 0; i < TIMES; ++i)
        result = getPSNR(I1,I2);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of PSNR CPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
        << " With result of: " <<  result << endl; 

    ------------------------------- PSNR GPU ----------------------------------------------------
    //time = (double)getTickCount();    

    //for (int i = 0; i < TIMES; ++i)
    //  result = getPSNR_GPU(I1,I2);

    //time = 1000*((double)getTickCount() - time)/getTickFrequency();
    //time /= TIMES;

    //cout << "Time of PSNR GPU (averaged for " << TIMES << " runs): " << time << " milliseconds."
    //  << " With result of: " <<  result << endl; 
/*
    //------------------------------- PSNR GPU Optimized--------------------------------------------
    time = (double)getTickCount();                                  // Initial call
    result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);
    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    cout << "Initial call GPU optimized:              " << time  <<" milliseconds."
        << " With result of: " << result << endl;

    time = (double)getTickCount();    
    for (int i = 0; i < TIMES; ++i)
        result = getPSNR_GPU_optimized(I1, I2, bufferPSNR);

    time = 1000*((double)getTickCount() - time)/getTickFrequency();
    time /= TIMES;

    cout << "Time of PSNR GPU OPTIMIZED ( / " << TIMES << " runs): &
### 回答1: OpencvSharp是一个开源的计算机视觉库,它提供了许多图像处理和计算机视觉算法。要计算相似度,可以使用OpencvSharp中的几个功能。 首先,可以使用OpencvSharp中的函数计算图像的直方图。直方图是图像中像素强度分布的统计信息。通过比较两个图像的直方图,可以判断它们在颜色或灰度上的相似度。 其次,可以使用OpencvSharp中的函数计算图像的结构相似性指数(SSIM)。SSIM是一种衡量图像质量的方法,它计算了亮度、对比度和结构三个方面的相似度。通过比较两个图像的SSIM值,可以得出它们的相似度分数。 还可以使用OpencvSharp中的函数计算图像的均方差(MSE)。MSE衡量了两个图像之间像素强度的差异。通过计算两个图像的像素值之差的平方,并求平均值,可以得到它们之间的MSE值。MSE越小,表示两个图像越相似。 除了上述方法,还可以使用OpencvSharp中的函数计算图像的结构相似度指数(PSNR)。PSNR是一种衡量图像失真程度的指标,它将图像的MSE值转化为对数刻度,并计算出表示图像质量的PSNR值。PSNR越高,表示图像质量越好,相似度也就越高。 综上所述,OpencvSharp提供了多种方法来计算图像相似度。根据具体的需求和应用场景,选择合适的方法进行相似度的计算。 ### 回答2: OpenCvSharp是一个基于OpenCV的开源计算机视觉库,它提供了各种图像处理和计算机视觉算法。要计算两个图像相似度,可以使用OpenCVSharp中的几个函数和方法。 首先,可以使用OpenCvSharp加载两个图像,并将它们转换为相同的颜色空间,例如灰度图像。然后,可以使用OpenCVSharp中的函数计算两个图像的差异。常用的方法是平方差法和相关系数。 平方差法是通过计算两个图像像素之差的平方来衡量它们的相似度。相关系数则是通过计算两个图像之间的协方差来衡量它们的相似度。相关系数的取值范围为-1到1,接近1表示两个图像高度相似,接近-1表示它们高度不相似。 接下来,可以根据得到的相似度进行进一步的处理。例如,可以设置一个阈值,当相似度超过该阈值时,认为两个图像相似。还可以使用其他的图像匹配算法,如特征匹配或基于深度学习的方法,来进一步提高相似度的准确性。 总之,使用OpenCvSharp可以方便地计算两个图像相似度,并根据需要进行进一步的处理和操作。 ### 回答3: OpenCvSharp是一个基于OpenCV的开源计算机视觉库,它提供了许多用于图像处理和计算机视觉任务的函数和类。要计算相似度,可以使用OpenCvSharp中的一些函数和算法。 首先,可以使用OpenCvSharp中的函数读取两个图像。可以使用`Cv2.ImRead`函数读取图像文件,并将其存储在`Mat`对象中。 接下来,可以使用`Cv2.CompareHist`函数计算两个图像的直方图相似度。该函数需要两个参数,分别是要比较的两个图像的直方图,以及相似度度量的方法。常用的方法包括相关性、卡方、交叉熵等。该函数的返回值是一个0到1之间的相似度得分,值越接近1表示两个图像越相似。 除了直方图相似度,还可以使用OpenCvSharp中的其他函数和算法计算图像相似度。例如,可以使用`Cv2.MatchTemplate`函数进行模板匹配,该函数将模板图像与目标图像进行比较,返回一个匹配结果图像,其中亮度表示匹配程度。可以使用该函数找到目标图像中与模板图像最相似的区域。 此外,OpenCvSharp还提供了一些其他的函数和类,用于特征提取、特征匹配和图像分类等任务。可以根据具体的应用场景选择适合的函数和算法来计算图像相似度。 总而言之,使用OpenCvSharp可以方便地计算图像相似度。根据具体的需求,可以选择不同的函数和算法来完成相应的计算任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值