[CF543A]/[CF544C]Writing Code
题目大意:
有\(n\)种物品,每种物品分别要\(c_i\)的代价,每个物品有\(1\)的体积,每个物品可以选多个,代价不能超过\(b\),求正好填满大小为\(m\)的背包的方案数。
思路:
\(f[i][j]\)表示有\(i\)个物品,总代价为\(j\)的方案数。\(\mathcal O(n^3)\)DP即可。
源代码:
#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=501,mod=1e9+7;
int f[N][N];
int main() {
const int n=getint(),m=getint(),b=getint();
f[0][0]=1;
for(register int i=1;i<=n;i++) {
const int x=getint();
for(register int j=1;j<=m;j++) {
for(register int k=x;k<=b;k++) {
(f[j][k]+=f[j-1][k-x])%=mod;
}
}
}
int ans=0;
for(register int i=0;i<=b;i++) {
(ans+=f[m][i])%=mod;
}
printf("%d\n",ans);
return 0;
}