计算机专业常用图论,同等学力申硕计算机专业--数学公式集合(新增学习笔记)...

组合数学部分:

基础公式:

定义:从n个不同的元素中, 取r个并按次序排列, 称为从n中取r个的一个排列, 全部这样的排列数记为P(n, r).

math?formula=P(n%2Cr)%3Dn(n-1)(n-2)...(n-r%2B1)%3D%5Cfrac%7Bn!%7D%7B%20(n-r)!%7D

定义: 从n个不同的元素中, 取r个但是不考虑次序时候, 称为从n中取r个的一个组合, 全部这样的组合总数记为C(n, r).

math?formula=C(n%2Cr)%3D%5Cfrac%7BP(n%2Cr)%7D%7Br!%7D%20%3D%5Cfrac%7Bn!%7D%7B(n-r)!r%20!%7D%20

定义: 从n个不同的元素中, 取r个沿一圆周排列, 称为从n中取r个的一个圆周排列, 全部这样的排列数记为Q(n, r).

math?formula=Q%7B(n%2Cr)%7D%3D%5Cfrac%7BP(n%2Cr)%7D%7Br%7D     

math?formula=Q(n%2Cn)%3D(n-1)!

牛顿二项式公式:

math?formula=%EF%BC%881%2Bx%EF%BC%89%5En%20%3D%20%5Csum_%7Bk%3D0%7D%5E%E2%88%9EC_%7Bn%7D%5Ekx%5Ek%20

math?formula=%EF%BC%881%2Bax%EF%BC%89%5En%20%3D%20%5Csum_%7Bk%3D0%7D%5E%E2%88%9EC_%7Bn%7D%5Eka%5Ekx%5Ek%20

推广牛顿二项式公式:

math?formula=%EF%BC%881%2Bx%EF%BC%89%5E%7B-n%7D%20%3D%20%5Csum_%7Bk%3D0%7D%5E%E2%88%9EC_%7B-n%7D%5Ekx%5Ek%20             

math?formula=C_%7B-n%7D%5Ek%20%3D%7B(-1)%7D%5EkC_%7Bn%2Bk-1%7D%5Ek

math?formula=%7B(1%2Bx)%7D%5E%7B-n%7D%20%3D%20%5Csum_%7Bk%3D0%7D%5E%E2%88%9E%7B(-1)%7D%5EkC_%7Bn%2Bk-1%7D%5Ekx%5Ek%20

math?formula=%7B(1-x)%7D%5E%7B-n%7D%20%3D%20%5Csum_%7Bk%3D0%7D%5E%E2%88%9EC_%7Bn%2Bk-1%7D%5Ekx%5Ek%20%2C%20-1%3Cx%3C1

常用公式:

math?formula=%EF%BC%881-x%EF%BC%89%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%7D%20%3D%201-%7B%5Cfrac%7B1%7D%7B2%7D%20%7Dx-%7B%5Cfrac%7B1%7D%7B8%7D%20%7Dx%5E2-%7B%5Cfrac%7B1%7D%7B16%7D%20%7Dx%5E3-%7B%5Cfrac%7B1%7D%7B128%7D%20%7Dx%5E4-...-%7B%5Cfrac%7B(2k-3)!!%7D%7B(2k)!!%7D%20%7Dx%5Ek-...%2C%20-1%5Cleq%20x%5Cleq%201

第二类Stirling数

math?formula=S(n%2Ck)有以下性质(用于等价关系划分个数计算):

math?formula=S(n%2C1)%20%3D%20S(n%2Cn)%20%3D1;

math?formula=S(n%2C2)%3D2%5E%7Bn-1%7D-1%20;

math?formula=S(n%2Cn-1)%3DC(n%2C2);

math?formula=S(n%2Ck)%3DkS(n-1%2Ck)%2BS(n-1%2Ck-1).

多重集合的一个r组合,

math?formula=S%3D%5C%7B%20%E2%88%9E%5Ccdot%201%2C%E2%88%9E%5Ccdot%202%2C%20...%2C%E2%88%9E%5Ccdot%20k%5C%7D,则这个序列个数等于S的r组合个数为

math?formula=C_%7B%EF%BC%88r%2Bk-1%2Cr)%7D%20,用一一对应的方法来做。

母函数与递归关系:

设多重集

math?formula=S%3D%5C%7B%20%E2%88%9E%5Ccdot%20a_%7B1%7D%2C%E2%88%9E%5Ccdot%20a_%7B2%7D%2C%20...%2C%E2%88%9E%5Ccdot%20a_%7Bk%7D%5C%7D, 则的 r-(可重)排列数是

math?formula=k%5Er%20.

定理:设

math?formula=S%3D%5C%7B%20n_%7B1%7D%5Ccdot%20a_%7B1%7D%2C%20n_%7B2%7D%5Ccdot%20a_%7B2%7D%2C%20...%2C%20n_%7Bk%7D%5Ccdot%20a_%7Bk%7D%5C%7D,且

math?formula=n%3D%5Csum_%7Bi%3D1%7D%5Ekn_%7Bi%7D%20 ,则S的排列数等于

math?formula=%5Cfrac%7Bn!%7D%7Bn_%7B1%7D!%5Ccdot%20n_%7B2%7D!%5Ccdot%20...%5Ccdot%20n_%7Bk%7D!%7D%20

定义: 利用给定序列

math?formula=a_%7B0%7D%2Ca_%7B1%7D%2Ca_%7B2%7D%20%2C%E2%80%A6所构造的函数

math?formula=F(x)%3D%20a_%7B0%7D%20%2Ba_%7B1%7Dx%2Ba_%7B2%7Dx%5E2%2B%E2%80%A6

称为序列

math?formula=a_%7B0%7D%2Ca_%7B1%7D%2Ca_%7B2%7D%20%2C%E2%80%A6的母函数

母函数的运算

设序列

math?formula=%5C%7Ba_%7Bi%7D%20%5C%7D的母函数

math?formula=A(x)%3D%5Csum_%7Bk%3D0%7D%5Ei%20a_%7Bk%7D%20x%5Ek,

math?formula=%5C%7Bb_%7Bi%7D%20%5C%7D的母函数为

math?formula=B(x)%3D%5Csum_%7Bk%3D0%7D%5Ei%20b_%7Bk%7D%20x%5Ek. 运算定义如下:

(1) 相等:A(x)=B(x) <=>

math?formula=%5C%7Ba_%7Bi%7D%20%5C%7D=

math?formula=%5C%7Bb_%7Bi%7D%20%5C%7D <=>

math?formula=a_%7Bi%7D=

math?formula=b_%7Bi%7D%20,  i=1,2,…

(2) 相加:  A(x)+B(x)=

math?formula=%5Csum_%7Bk%3D0%7D%5Ei(%20a_%7Bk%7D%2Bb_%7Bk%7D)%20x%5Ek

(3) 相减:  A(x)-B(x)=

math?formula=%5Csum_%7Bk%3D0%7D%5Ei(%20a_%7Bk%7D-b_%7Bk%7D)%20x%5Ek

(4) 数乘:  cA(x)=

math?formula=%5Csum_%7Bk%3D0%7D%5Eic%20a_%7Bk%7D%20x%5Ek

(5) 相乘:  A(x)B(x)=

math?formula=%5Csum_%7Bk%3D0%7D%5Eic_%7Bk%7Dx%5Ek%20%20, 其中

math?formula=c_%7B0%7D%20=

math?formula=a_%7B0%7D%20b_%7B0%7D%20,

math?formula=c_%7B1%7D%20=

math?formula=a_%7B0%7D%20b_%7B1%7D%20%2Ba_%7B1%7D%20b_%7B0%7D%20

math?formula=c_%7B2%7D%20=

math?formula=a_%7B0%7D%20b_%7B2%7D%20%2Ba_%7B1%7D%20b_%7B1%7D%20%2Ba_%7B2%7D%20b_%7B0%7D%20%2C...............%2C

math?formula=c_%7Br%7D%20=

math?formula=a_%7B0%7D%20b_%7Br%7D%20%2Ba_%7B1%7D%20b_%7Br-1%7D%20%2B...%2Ba_%7Br%7D%20b_%7B0%7D%20%2C...........

(6) 逆: 如果A(x)B(x)=1, 则称B(x)为A(x)的逆, 记为B(x)=

math?formula=A%5E%7B-1%7D(x)%20 =

math?formula=1%2FA(x).

math?formula=%5Cfrac%7B1%7D%7B1-x%7D%20%3D%201%20%2B%20x%20%2B%20x%5E2%20%2B%20x%5E3%20%2B...%20

一元二次方程的根的通解:

math?formula=x%20%3D%20%5Cfrac%7B%20-b%5Cpm%20%5Csqrt%7Bb%5E2-4ac%7D%20%7D%7B%202a%20%7D%20

常系数齐次递归关系:

math?formula=H_%7Bn%7D-%20a_%7B1%7DH_%7Bn-1%7D-%20a_%7B2%7DH_%7Bn-2%7D-...-%20a_%7Br%7DH_%7Bn-r%7D%20%3D%200

math?formula=a_%7Br%7D%5Cneq%200%20,则递归关系上式为一元

math?formula=r次方程,即

math?formula=r次特征方程如下:

math?formula=x%5Er-%20a_%7B1%7Dx%5E%7Br-1%7D-%20a_%7B2%7Dx%5E%7Br-2%7D-...-%20a_%7Br-1%7Dx-a_%7Br%7D%20%3D%200

math?formula=q_%7Bi%7D%20 (i=1,2,...)为特征方程的根,则有:

如果

math?formula=q_%7Bi%7D%20为不同实数根则

math?formula=H_%7Bn%7D%20的一般解如下:

math?formula=H_%7Bn%7D%3Dc_%7B1%7Dq_%7B1%7D%5En%20%2B%20c_%7B2%7Dq_%7B2%7D%5En%20%2B...%2Bc_%7Br%7Dq_%7Br%7D%5En%20%20%20

如果

math?formula=q_%7Bi%7D%20为i个重复特征根则

math?formula=H_%7Bn%7D%20的一般解如下:

math?formula=H_%7Bn%7D%3D%EF%BC%88c_%7B1%7D%20%2B%20c_%7B2%7Dn%20%2B%20c_%7B3%7Dn%5E2%20...%2Bc_%7B%7Be_%7Bi%7D%7D%7Dn%5E%7Be_%7Bi%7D-1%7D%EF%BC%89q_%7Bi%7D%5En%20%20%20

当特征方程为二次方程,

math?formula=q_%7B1%7D%20

math?formula=q_%7B2%7D%20是特征方程的,当

math?formula=q_%7B1%7D%20%5Cneq%20q_%7B2%7D时,

math?formula=H_%7Bn%7D%3Db_%7B1%7Dq_%7B1%7D%5En%2Bb_%7B2%7Dq_%7B2%7D%5En%20,当

math?formula=q_%7B1%7D%3Dq_%7B2%7D%3Dq(重根),则

math?formula=H_%7Bn%7D%3D(b_%7B1%7D%2Bb_%7B2%7Dn)q%5En

仅有两个复特征根:

当特征根为复数时,则有任意复数

math?formula=a%2Bbi 都可以写成

math?formula=ce%5E%7Bid%7D,故可设两个复数特征根如下:

math?formula=%5Calpha%20_%7B1%7D%20%3D%20%5Cdelta%20%20%2B%20i%5Comega%20%20%3D%20%5Crho%20e%5E%7Bi%5Ctheta%20%7D%20%20%3D%20%5Crho%20(%5Ccos%20%5Ctheta%20%20%2B%20i%5Csin%20%5Ctheta%20%20)

math?formula=%5Calpha%20_%7B1%7D%20%3D%20%5Cdelta%20%20-%20i%5Comega%20%20%3D%20%5Crho%20e%5E%7B-i%5Ctheta%20%7D%20%20%3D%20%5Crho%20(%5Ccos%20%5Ctheta%20%20-%20i%5Csin%20%5Ctheta%20%20)

其中

math?formula=%5Crho%20%3D%20%5Csqrt%7B%5Cdelta%20%5E2%20%2B%20%5Comega%20%20%5E2%7D%20

图论:

欧拉公式:

math?formula=R%2BV-E%20%3D2%2C%20R%5Cgeq%20%202,R为区域,V为顶点,E为边。

一个无向图

math?formula=G_%7B(V%2CE)%7D是连通图,那么E的数目大于等于顶点的数目减1,即

math?formula=%7CE%7C%5Cgeq%20%20%7CV%7C%20-1

完全二部图的定义:设G=(V,E)为二分图,V=XUY,且X中的任一顶点与Y中每一个顶点均有且仅有唯一的一条边相连,则称G为完全二部图或完全偶图。

【定理一】图G是2-可着色的当且仅当G是二部图。

【定理二】奇圈和奇数阶轮图都是3-色图,而偶数阶轮图都是4-色图。

【定理三】树的着色数为2。

离散数学部分:

蕴含条件:

P是Q的充分条件时用:

math?formula=P%20%5Crightarrow%20Q

一般词汇:(如果P那么Q,只要P就Q,P就Q)

Q是P的必要条件时用:

math?formula=Q%20%5Crightarrow%20P

一般词汇:(只有P才Q,仅当P才Q,Q仅当P)

Q是P的充分且必要条件时用:

math?formula=Q%20%5Cleftrightarrow%20P

一般词汇:(当且仅当,充分且必要)

等价公式:

math?formula=P%20%5Crightarrow%20%20Q%20%5CLeftrightarrow%20%20%E2%94%90P%20%20%5Clor%20Q

math?formula=P%20%5Cleftrightarrow%20%20Q%20%5CLeftrightarrow%20%20(P%20%5Crightarrow%20%20Q)%20%5Cland%20(Q%20%5Crightarrow%20%20P)

math?formula=P%20%5Cleftrightarrow%20%20Q%20%5CLeftrightarrow%20%20(%E2%94%90P%20%5Cleftrightarrow%20%20%E2%94%90Q)

math?formula=P%20%5Cleftrightarrow%20%20Q%20%5CLeftrightarrow%20%20(P%20%5Cland%20Q)%20%5Clor%20(%E2%94%90Q%20%5Cland%20%20%E2%94%90P)

推理定律:

math?formula=A%20%5CRightarrow%20%20%EF%BC%88A%20%5Clor%20%20B%EF%BC%89              (附加)

math?formula=%EF%BC%88A%20%5Cland%20B%EF%BC%89%20%5Cimplies%20A        (化简)

math?formula=((A%20%5Crightarrow%20%20B)%20%5Cland%20A)%20%5Cimplies%20%20B      (假言推理)

主析取范式:

math?formula=A_%7B1%7D%20%5Clor%20A_%7B2%7D%20%5Clor%20%20A_%7B3%7D%20%5Clor%20...%20%5Clor%20A_%7Bn%7D 其中

math?formula=A_%7Bi%7D是包含所有变元且该变元有且仅出现一次的合取式,称为小项。有n个变元,则有

math?formula=2%5En

主合取范式:

math?formula=A_%7B1%7D%20%5Cland%20A_%7B2%7D%20%5Cland%20%20A_%7B3%7D%20%5Cland%20...%20%5Cland%20A_%7Bn%7D其中

math?formula=A_%7Bi%7D是包含所有变元且该变元有且仅出现一次的析取式,称为大项。有n个变元,则有

math?formula=2%5En

集合论:

幂集定义:

math?formula=P(A)%20%3D%20%5C%7Bx%20%7C%20x%20%5Csubseteq%20A%20%5C%7D 即全部子集。 实例:

math?formula=P(%E2%88%85)%20%3D%20%5C%7B%E2%88%85%5C%7D,

math?formula=P(%5C%7B%E2%88%85%5C%7D)%20%3D%20%5C%7B%E2%88%85%2C%5C%7B%E2%88%85%5C%7D%5C%7D ,计数:如果|A|=n,则|P(A)| =

math?formula=2%5En

【定理】非空集合S关于它上面的任何等价关系R的商集具有下列特点:S/R ≠ ∅;若A∈S/R,则A ≠ ∅;若A,B∈S/R,A≠B,则A∩B = ∅.

【定义】设A为非空集合,若存在A的一个子集族

math?formula=A%60满足:

math?formula=%E2%88%85%20%5Cnotin%20A%20%5E%20%60%EF%BC%9B%5Ccup%20A%20%5E%20%60%20%3D%20A%EF%BC%9B%5Cforall%20x%2Cy%20%5Cin%20%20A%20%5E%20%60%20%5Cland%20x%5Cneq%20%20y%20%5Crightarrow%20%20x%20%5Ccap%20y%20%3D%20%E2%88%85%20, 则称

math?formula=A%60是A的一个划分,

math?formula=A%60中元素称为划分块。

【定理】设

math?formula=%3CA%20%2C%20%5Cpreceq%20%20%3E为一个偏序集,若A的最长链的长度为n,则A存在n个划分块的划分,每个块都是反链。

关于对称差特性:A⊕A=∅,∅⊕A=A⊕∅=A

群的定义:一个非空集合G中如果定义了一个“乘法”运算,满足:

(1) 封闭性:

math?formula=%5Cforall%20a%2Cb%20%5Cin%20%20G%2C%20a%20%5Ctimes%20%20b%20%3D%20c%20%5Cin%20G%3B

(2)结合律:

math?formula=%5Cforall%20a%2Cb%2Cc%20%5Cin%20G%2C%20a%20%5Ctimes%20(b%20%5Ctimes%20c)%20%3D%20(a%20%5Ctimes%20b)%20%5Ctimes%20c%3B

(3)有单位元:

math?formula=%5Cexists%20e%20%5Cin%20G%2C%20%5Cexists%20a%20%5Cin%20G%2C%20e%20%5Ctimes%20%20a%20%3D%20a%20%5Ctimes%20e%20%3D%20a%20%3B

(4)每个元

math?formula=a 有逆元

math?formula=a%5E%7B-1%7D

math?formula=a%20%5Ctimes%20a%20%5E%7B-1%7D%20%3D%20a%20%5E%20%7B-1%7D%20%5Ctimes%20a%20%3D%20e, 则称

math?formula=G为一个群。

函数部分:

设 |A| =n,|B|=m, 一般说来A到B共有

math?formula=2%5E%7Bmn%7D个二元关系,A上共有

math?formula=2%5E%7Bm%5E2%7D个二元关系,该知识点可以用0,1矩阵来理解在,m*n的矩阵中有m*n个0和1不同的组合,其总数为

math?formula=2%5E%7Bmn%7D种。

【定义】设F为二元关系,若对任意的

math?formula=x%20%5Cin%20dom%20F 都存在唯一的

math?formula=y%20%5Cin%20ran%20F 使得

math?formula=x%20F%20y 成立,则称

math?formula=F为函数。

【定义】设是

math?formula=A%2CB集合,如果函数

math?formula=f%0A 满足以下条件:

(1)

math?formula=dom%20f%20%3D%20A

(2)

math?formula=ran%20f%20%5Csubseteq%20%20B

则称

math?formula=f 是从

math?formula=A

math?formula=B 的函数,记作

math?formula=f%20%3A%20A%20%5Crightarrow%20%20B

【定义】设函数

math?formula=f%20%3A%20A%20%5Crightarrow%20B.%20

(1)若

math?formula=ran%20f%20%3D%20B(值域=B),则称

math?formula=f 是满射的。

(2)若对于任何的

math?formula=x_1%2Cx_2%20%5Cin%20A%20%2Cx_1%20%5Cneq%20%20x_2%20%2C%E9%83%BD%E6%9C%89%20f(x_1)%20%20%5Cneq%20%20f(x_2),则称

math?formula=f 是单射的。

(3)若

math?formula=f既是满射的,又是单射的,则称

math?formula=f是双射的。

举例说明:

math?formula=f%3A%5C%7B%201%2C2%20%5C%7D%20%5Crightarrow%20%20%5C%7B0%5C%7D%2C%20f(1)%20%3D%20f(2)%20%3D%200,

math?formula=f%0A 是满射的,但不是单射的。

math?formula=f%3A%20N%20%5Crightarrow%20%20N%2Cf(x)%20%3D%202x是单射的,但不是满射,

math?formula=ran%20f不包含奇数。

math?formula=f%3A%20Z%20%5Crightarrow%20%20Z%2C%20f(x)%20%3D%20x%2B1 是双射的。

1.当

math?formula=n%20%3C%20m 时,

math?formula=A%20%5Crightarrow%20%20B中不含满射,从而不含双射函数;当

math?formula=n%20%5Cleq%20m时,

math?formula=A%20%5Crightarrow%20%20B中共含

math?formula=m(m-1)...(m-n%2B1)个不同的单射函数;

2.当

math?formula=m%3Dn时,

math?formula=A%5Crightarrow%20%20B中含有

math?formula=n!个双射函数;

3.当

math?formula=m%20%3C%20n时,

math?formula=A%20%5Crightarrow%20%20B中不含单射函数,从而不含双射函数。

添加学习笔记:

1f2b21397a23

牛顿二项式

1f2b21397a23

推广牛顿二项式

1f2b21397a23

组合基础

1f2b21397a23

第二类斯特林公式

1f2b21397a23

路径数问题

1f2b21397a23

母函数

1f2b21397a23

递推关系1

1f2b21397a23

递推关系2

1f2b21397a23

非齐次递推关系

1f2b21397a23

整数拆分

1f2b21397a23

可无限重复发码问题

1f2b21397a23

指数型母函数

1f2b21397a23

图论欧拉公式

1f2b21397a23

r阶差分

1f2b21397a23

容斥原理1

1f2b21397a23

容斥原理2

1f2b21397a23

错排问题

1f2b21397a23

棋盘多项式

1f2b21397a23

鸽笼原理

1f2b21397a23

图论定义1

1f2b21397a23

图论定义2

1f2b21397a23

图论定义3

1f2b21397a23

四色定理

1f2b21397a23

树与图

1f2b21397a23

Ramsey数

1f2b21397a23

离散推理公式

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值