数学图形(1.37)伯努利双纽线(无穷大的符号)

在数学中, 伯努利双纽线是由平面直角坐标系中的以下方程定义的平面代数曲线 :

(x^2 + y^2)^2 = 2a^2 (x^2 - y^2).
曲线的形状类似于打横的阿拉伯数字 8 或者无穷大的符号。

关于伯努利双纽线的描述首见于1694年,雅各布·伯努利将其作为椭圆的一种类比来处理。椭圆是由到两个定点距离之和为定值的点的轨迹。而卡西尼卵形线则是由到两定点距离之乘积为定值的点的轨迹。当此定值使得轨迹经过两定点的中点时,轨迹便为伯努利双纽线。

伯努利将这种曲线称为lemniscus, 为拉丁文中“悬挂的丝带”之意。

伯努利双纽线是双曲线关于圆心在双曲线中心的圆的反演图形。

vertices = 10000
t = from (-PI) to (PI)

r = sqrt(2)*sqrt(cos(2*t))

a = r*10

x = a*sin(t)
y = a*cos(t)

将脚本中的X,Y的值交换一下就得到无穷大的符号

 

将r = sqrt(cos(2*t))改为r = sqrt(sin(2*t))试下:

vertices = 10000
t = from (0) to (2*PI)

r = sqrt(sin(2*t))

a = r*10

x = a*sin(t)
y = a*cos(t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值