Weekly 10 小结

原文链接:http://www.cnblogs.com/Stomach-ache/p/3977032.html

A题

模拟

 1 T = int(input())
 2 while T:
 3     T -= 1
 4     s = raw_input()
 5     n = len(s)
 6     res, pre = 0, 0
 7     for i in xrange(1, n):
 8         if (s[i] == s[pre]):
 9             res += 1
10         else:
11             pre = i
12     print res

B题

模拟

 1 n, k = map(int, raw_input().split())
 2 s = raw_input()
 3 
 4 res = []
 5 ans = 0
 6 for i in xrange(n):
 7     if i >= k:
 8         ans ^= int(res[i-k])
 9     tmp = ans ^ int(s[i])
10     res.append(tmp)
11     ans ^= tmp
12 print ''.join(map(str, res))

C题

题目大意:给出k种高度不同的积木,每种积木可以使用无数次,问使用这些积木拼成高度为N的塔的方法数对1e9 + 7的模是多少。

另F(x)为拼接成高度为x的方法数,则F(x) = sigma(F(i)) (1 <= i <= k && high[i] <= x)

可先处理出1~15的F函数的值,当N>15时,使用矩阵加速即可。

 1 #include <cmath>
 2 #include <cstdio>
 3 #include <vector>
 4 #include <cstring>
 5 #include <iostream>
 6 #include <algorithm>
 7 using namespace std;
 8 
 9 typedef long long LL;
10 const int MOD = 1e9 + 7;
11 #define rep(i, n) for (int i = (1); i <= (n); i++)
12 LL N, K, A[20], f[20];
13 struct Matrix {
14     LL a[20][20];
15     Matrix() {memset(a, 0, sizeof(a));}
16     
17     Matrix operator * (const Matrix &x) const {
18         Matrix c;
19         rep (i, 15) rep (k, 15) rep (j, 15) c.a[i][j] = (c.a[i][j] + x.a[k][j] * a[i][k]) % MOD;
20         return c;
21     }
22 };
23 
24 Matrix pow_mod(Matrix a, LL b) {
25     if (b < 0) return a;
26     Matrix res; 
27     rep (i, K) res.a[i][i] = 1;
28     while (b > 0) {
29         if (b & 1) res = res * a;
30         a = a * a;
31         b >>= 1;
32     }
33     return res;
34 }
35 
36 
37 int main() {
38     ios::sync_with_stdio(false);
39     cin >> N >> K;
40     rep (i, K) cin >> A[i];
41    
42     sort(A + 1, A + K + 1);
43     f[0] = 1;
44     rep (i, 15) rep (j, K) if (i >= A[j]) f[i] = (f[i] + f[i - A[j]]) % MOD;
45     rep (i, 15) cerr << f[i] << endl;
46     if (N <= 15) {
47         cout << f[N] * 2 % MOD << endl;
48         return 0;
49     }
50     
51     Matrix a; rep (i, 15) a.a[i][i-1] = 1;
52     a.a[1][1] = 0; rep (i, K) a.a[1][A[i]] = 1;
53     Matrix res = pow_mod(a, N - 15);
54     LL ans = 0;
55     rep (i, 15) ans = (ans + res.a[1][i] * f[16 - i]) % MOD;
56     ans = (ans * 2) % MOD;
57     cout << ans << endl;
58     return 0;
59 }

D题

题目大意:给出N个点,每个点有两个值V和P。要求从1开始走到N,在每个点选择有两种选择,要么将总得分加上V,要么还可以向前走P步。

目标是使得走到N时的总得分最大。题目保证至少存在一种解。

这题DP方程很明显,从后往前进行dp, dp[i] = min(dp[i], dp[j]), i < j <= i + P[i];

所以对于每个点,要快速的求出dp[i]~dp[i + P[i]] 的最小值。

直到做这个题我才知道原来BIT也可以用来求最值,原来0base和1base是这个含义。。(数组下标从0/1开始)

原来BIT数组下标可以从0开始,貌似被称为0base邪教,如:for (int x = i; x >= 0; x -= ~x & x + 1) {}

这里很巧妙的利用了~x = - x + 1,即~x = -(x + 1),还有运算符的优先级。摘自叉姐代码。

 1 #include <cmath>
 2 #include <cstdio>
 3 #include <vector>
 4 #include <iostream>
 5 #include <algorithm>
 6 using namespace std;
 7 
 8 #define rep(i, n) for (int i = (1); i <= (n); i++)
 9 typedef long long LL;
10 const int MAX_N = 500050;
11 const LL INF = (LL)1e18;
12 int V[MAX_N], P[MAX_N]; 
13 LL tree[MAX_N];
14 int N;
15 
16 int main() {
17     scanf("%d", &N);
18     for (int i = 1; i <= N; i++) scanf("%d %d", V+i, P+i);
19     
20     fill(tree+1, tree+N+1, -INF); 
21     LL ans = tree[N] = V[N], sum = 0;
22     for (int i = N-1; i >= 1; i--) {
23         ans = -INF;
24         for (int x = min(i+P[i], N); x > 0; x -= x&-x) 
25             ans = max(ans, tree[x]);
26         if (ans > -INF) {
27             for (int x = i; x <= N; x += x&-x) 
28                 tree[x] = max(tree[x], ans - V[i]);
29         }
30         
31         ans += sum;
32         sum += V[i];
33     }
34     printf("%lld\n", ans);
35     
36     return 0;
37 }

E题

转载于:https://www.cnblogs.com/Stomach-ache/p/3977032.html

展开阅读全文
博主设置当前文章不允许评论。

没有更多推荐了,返回首页