困扰多年的问题,Python到底是语言,还是工具,哈佛教授完美诠释

困扰多年的问题,Python到底是语言,还是工具,哈佛教授完美诠释

Python是出类拔萃的

然而,这是一句非常模棱两可的话。这里的"Python"到底指的是什么? 是Python的抽象接口吗?是Python的通用实现CPython吗(不要把CPython跟Cython搞混了)?亦或者指的完全是其他的东西呢?可能我另外指的是Jython,或者IronPython,或者是PyPy。也或者转而谈论的又是RPython或者RubyPython(这两者是完全不同的东西)。

上面提到的那些技术经常被提起和引用, 它们的使用目的和场景是完全不一样的(至少,它们的操作方式是完全不一样的)

自从我使用Python工作以来,我已经用过了各种各样的.*ython工具了。但是直到最近我才花时间去理解到底它们是干嘛的,它们是怎样工作的,为什么它们是不可或缺的。

在这篇文章里面,我会介绍各种Python的实现,最后以对PyPy的介绍结尾, 因为我个人认为它是Python的未来。

所有的都从理解什么是"Python"开始。

如果你对机器码,虚拟机之类的很熟了,你可以跳过开头,直接从 "即时编译: PyPy和它的未来" 这部分开始看起。

Python是解释型的还是编译型的?

这是个Python新人都会迷惑的问题。

首先需要明了的是Python只是一个接口。有一个关于Python应该做什么以及怎么做的具体说明(就像其他任何接口一样 ),并且对应的有很多具体的实现(也像其他接口一样)。

其次需要知道的是“解释型”和“编译型”是具体实现的特性,而不是接口的特性。

所以,这个问题本身就没有组织好。

Python是解释型还是编译型的?这个问题真的没有组织好。

对使用最广泛的实现(CPython:用C实现的,通常简单的说成Python,若你不知道我所说的这些,那很肯能你在使用的就是CPython)而言,这个问题的答案是:解释型,但带有一些编译型特征。CPython把Python源码编译*成字节码,之后再解释这些字节码,执行之。

*注意:这个编译不是通常意义上的编译。通常我们说的编译,是指把高级语言代码转换成机器码。但这里的编译实际上是另一种意义上的编译。(译者,这句话不是很懂,原文是it is a ‘compilation’ of sorts,不知作何解,求教各位读者。)

再详细看下上面的答案吧,这有助于我们理解本文中后面会讲到的几个概念。

字节码 vs. 机器码

了解字节码和机器码(或者native code)的区别是很重要的,最好的办法或许是看看例子:

  • C代码被编译成机器码,将在处理器上直接执行。每一条指令控制CPU工作。
  • Java代码被编译成字节码,将在Java虚拟机(JVM)这个抽象的计算机上执行。每一条指令由JVM处理,JVM同计算机本身之间交互。

简而言之:机器码快的多,但字节码更易迁移,也更安全。

机器码随机器的变化而变化,但字节码在所有的机器上都是一样的。有人可能会认为机器码是对特定环境优化了的。

  1. 回到CPython,工具链的执行过程如下:
  2. CPython编译你的Python源代码,生成字节码。

字节码随后在CPython虚拟机上执行。

初学者常常因为看到.pyc文件而假设Python是编译型的。这也有一些合理性:.pyc文件正式之后要解释的字节码文件。所以,你若之前运行过你的Python代码,生成了.pyc文件,再次运行时就要快得多,因为不需要再次编译生成字节码了。

可选的虚拟机:Jython,IronPython等

正如我之前所述,Python有很多实现。前面也提到,CPython是最通用的。这是一个用C实现的,被认为是”默认“的实现。

但其他的呢?其中最显赫的之一就是Jython,一个用Java实现的采用了JVM的实现。CPython生成在CPython虚拟机上运行的字节码,而Jython生成在JVM上运行的java字节码(这同编译Java程序生成java字节码的过程是一样的)。

困扰多年的问题,Python到底是语言,还是工具,哈佛教授完美诠释

”为啥你要用其他的实现?”,你可能会如此发问。好吧,对开发者而言,不同的实现对不同的技术难题的支持程度不一样。

CPython中很容易为你的Python代码写C扩展,因为最终都是由C解释器执行的。另一方面,Jython则使得和其他java程序共同工作很容易:无需其他工作,你就可导入任何Java类,在你的Jython程序中使用其他Java类。(题外话,若你没有认真思考,这一段会很难。此时我们已经在讨论把不同语言的代码混在一起,并编译成同一程序。(Rostin 提出混合Fortran和C代码编程已经有一段时间了。所以,这并不新鲜,但仍然很酷。))

下面是一个例子,一段合法的Jython代码:

[Java HotSpot(TM) 64-Bit Server VM (Apple Inc.)] on java1.6.0_51

>>> from java.util import HashSet

>>> s = HashSet(5)

>>> s.add("Foo")

>>> s.add("Bar")

>>> s

[Foo, Bar]

IronPython是另一很流行的Python 实现,完全用C#实现,针对.NET平台。她运行在可以叫做.NET虚拟机的平台上,这是微软的 Common Language Runtime (CLR),同JVM相对应。

你可能会说,Jython:Java::IronPython:C#。它们各自运行在相同的虚拟机上,你能从你的IronPython中导入C#的类,从你写的Jython代码中带入Java类,等等

你完全可以不用任何非CPython的实现就能完成你手上的任何工作。但是使用这些技术也是有很多的好处的,大部分取决于你现在所使用的技术栈。 你使用了很多基于JVM的语言?Jython就是为你准备的。使用的都是.NET世界的语言?那么你应该试试IronPython了(或许你已经在用了)

困扰多年的问题,Python到底是语言,还是工具,哈佛教授完美诠释

顺便说一下(尽管这不是使用不同的实现的理由),注意Python的各种实现在对待你的Python源码的时候所做的处理方式是完全不一样的。然后这些差异是很小的,由于这些实现都在不停的发展改进中,随着时间的推移,这些差异会慢慢融合和兼容。比如,IronPython默认情况下使用Unicode字符串,但是在2.x版本的CPython中默认是ASCII字符串(如果使用了非ASCII字符串,会抛出一个UnicodeEncodeError错误),但是在3.x版本里面CPythong已经默认支持Unicode字符串了。

即时编译: PyPy和它的未来

我们已经有了一个使用C写的Python实现,一个用Java写的,一个用C#写的。接下来就是:用Python写的Python实现(有心人可能会注意这句话有点问题,是个死循环,^_^)

接下来我们看下什么地方容易搞混淆。首先,我们讨论下即时编译器JIT

JIT: 为什么会有这个?它的原理是什么?

大家都知道本地机器码的速度比字节码的速度快很多。那么,如果我们能将一些字节码直接编译成本地机器码再去运行它会怎样呢?我们必须花费一些代价(比如时间)在编译字节码到本地机器码上,如果最终的运行时间更快,那么这个代价就是值得的。这就是JIT编译器的动机,一种混合了解释器和编译器好处的技术。简单来讲,JIT就是想通过编译技术提升脚本解释器系统的速度

喜欢这篇文章的话,转发+评论哦!让大家看看你独特的见解哦!

好了给大家送上这一篇文的福利 私信“01”即可获取哦!

困扰多年的问题,Python到底是语言,还是工具,哈佛教授完美诠释

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

参与评论 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

weixin_34099526

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值