判断是否有三个递增子序列 Increasing Triplet Subsequence

问题:

Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.

Formally the function should:

Return true if there exists  i, j, k 
such that  arr[i] <  arr[j] <  arr[k] given 0 ≤  i <  j <  k ≤  n-1 else return false.

Your algorithm should run in O(n) time complexity and O(1) space complexity.

Examples:
Given [1, 2, 3, 4, 5],
return true.

Given [5, 4, 3, 2, 1],
return false.

解决:

① 要求O(n)的时间复杂度和O(1)的空间复杂度。

遍历数组,维护一个最小值,和倒数第二小值,遍历原数组的时候,如果当前数字小于等于最小值,更新最小值,如果小于等于倒数第二小值,更新倒数第二小值,如果当前数字比最小值和倒数第二小值都大,说明此时有三个递增的子序列了,直接返回ture,否则遍历结束返回false。

class Solution { //7ms
    public boolean increasingTriplet(int[] nums) {
        int min = Integer.MAX_VALUE;
        int secmin = Integer.MAX_VALUE;
        for (int n : nums){
            if (min >= n){
                min = n;
            }else if (secmin >= n && min < n){
                secmin = n;
            }else{
                return true;
            }
        }
        return false;
    }
}

转载于:https://my.oschina.net/liyurong/blog/1594467

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值