建筑企业资质升级不过的原因有那些

近日,住建部网站发布《关于建设工程企业资质审查意见的公示》(建办受理函[2016]36号)。其中,住建部同意9家企业的特级资质申请,同意66家企业的一级资质申请。值得注意的是,未获得“同意”的40家建筑企业中,有36家是因为所提供的工程业绩存在问题。四川贝廷企业管理有限公司为大家整理了不通过的主要原因,有以下几个方面:

  工程项目及资料
  1、工程项目存疑,不予认定
  2、项目非单体建筑,不予认定
  3、单位工程质量竣工验收记录及竣工验收备案表中无竣工验收日期,不予认定
  4、竣工验收备案表中印章不清晰,不予认定
  基本逻辑不清
  1、工程发包人和承包人为同一单位
  2、工程中标单位非申报单位
  3、工程中标日期晚于合同签订日期
  项目经理出问题
  1、项目经理非建筑工程专业
  2、项目经理在任职时非一级注册建造师,属超范围执业
  3、项目经理超二级建造师执业范围执业
  4、项目经理项目经理未注册在申报单位
  5、项目经理在开工后变更注册至另一单位
  6、中标通知书中项目经理与合同中的项目经理不一致
  7、项目经理一级注册建造师证书取得日期晚于项目中标日期
  设计、图纸问题
  1、项目未提供图纸
  2、工程立面图纸不清晰,且未能反映项目为单体建筑
  3、项目图纸无设计单位出图章、设计人员注册执业印章
  4、工程提供图纸未能反映考核指标
  5、图纸中设计单位出图章有效期、图纸设计人员注册执业印章有效期和图纸出图日期不符,非有效图纸
  6、图纸设计人员注册执业印章存疑
  7、设计部分不予认定
  合同协议出问题
  1、合同协议书明确发包人建设内容与合同名称及竣工验收内容不符
  2、未提供工程合同专用条款
  3、合同签订日期早于直接发包情况报告书签发日期
原文地址:http://www.scbuilding.cn/cjwtjd/1206.html
  其他原因
  1、提供的设备购置发票不清晰,未能反映设备名称及技术指标,不予认定
  2、一级注册建造师重复注册

转载于:https://blog.51cto.com/14311959/2391858

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值