4.42 类人概念学习会是未来吗?
那么,以贝叶斯规划学习为核心的类人概念学习将会是未来的主要方向吗?回答这个问题之前,我们首先看下深度学习的奠基者 Geoffrey Hinton 先生对 BPL 方法的评价。Geoffrey Hinton 先生首先肯定了BPL 模型通过视觉图灵测试的意义,他认为 BPL 方法最令人兴奋的成果或许是能让那些宣称智能计算机系统的学习方式与人类完全不同的批评者闭嘴,因为他们的主要论据正是计算机不能从单个例子中形成概念。
我们知道深度学习近年来取得了举世瞩目的成就,被广泛应用在许多领域,例如内容搜索、语音识别、图像识别等。但是现在看来,似乎贝叶斯规划学习要比深度学习的表现更好一点,因为这种方法更加适合我们人类适应环境的方式。当然,两种学习方法在不同的任务上还是独具特色,各领风骚,假如能彼此借鉴,相互融合,一定能够大幅提升人工智能的水平。当数据量巨大但较混乱的情况下,深度学习能发挥优势;而在数据量较少而清晰的情况下,贝叶斯规划学习占领上风。
笔者一直认为在科学研究中,哲学上的思路发展远比技术本身更加重要!类人概念学习和深度强化学习的未来也必然是浑然融合成一体,只有这样才符合人类学习和决策的过程,才真正能提升人工智能的水平。笔者也曾借助声音和图像融合研究的基础,花费大量时间研究这两种方法的融合,并致力于设计出一个异构学习方法融合的混血系统,来解决大数据中的降维、异构问题,并发挥小样本学习的优势,利用人工智能满足我们实际生活中的事务性需求。