【题解】 CF338D GCD Table

\(Description:\)

给出一个长度为k的数列a,给出n,m,有一个矩阵满足\(gcd(i,j)\)为第i行j列的元素。

问这个矩阵中是否有满足\(gcd(x,y+i-1)=a_i\)的x,y。

\(Sample\) \(Input\) \(1\):

100 100 5
5 2 1 2 1

\(Sample\) \(Output\) \(1\):

YES

\(Sample\) \(Input\) \(2\):

100 8 5
5 2 1 2 1

\(Sample\) \(Output\) \(2\):

NO

\(Solution:\)

听说这是一道把XLH搞自闭的题,震惊(ΩДΩ)!!!。

乍眼看除了暴力毫无思路,好好思考之后发现,好像x是所有\(a_i\)的最小公倍数

那么直接判断x可以得到40分的好成绩,考虑正解

\(y+i-1\)\(a_i\)的整数倍,那么好像可以用同余式写出来:

\(y+i-1 \equiv 0 \pmod {a_i}\)

\(y\equiv 1-i \pmod {a_i}\)

那么就列出了一堆式子,那么就可以直接用excrt 求解

求出来再吧x,y带回去验证

#include<bits/stdc++.h>
#define int long long 
using namespace std;
int n,m,X,Y,k;
namespace subtask2{
    const int N=1e5;
    int a[N+5],b[N+5],t[N+5];
    inline int gcd(int a,int b){
        int tmp=0;
        while(b!=0){
            tmp=a%b;
            a=b;
            b=tmp;
        }
        return a;
    }
    inline int mul(int a,int b,int p){
        int ret=0;
        while(b>0){
            if(b&1) ret=(ret+a)%p;;
            a=(a+a)%p;
            b>>=1;
        }
        return ret;
    }
    inline int Exgcd(int a,int b,int &x,int &y){
        if(b==0) { x=1;y=0;return a;}
        int tmp=Exgcd(b,a%b,x,y);
        int z=x;x=y;y=z-a/b*y;
        return tmp;
    }
    inline int excrt(){
        int M=b[1],ans=a[1],x=0,y=0;
        for(int i=2;i<=k;++i){
            int oo=((a[i]-ans)%b[i]+b[i])%b[i];
            int p=Exgcd(M,b[i],x,y);
            if(oo%p!=0) return -1;
            x=mul(x,oo/p,b[i]/p);
            ans+=x*M;
            M=M/p*b[i];
            ans=(ans%M+M)%M;
        }
        ans=(ans%M+M)%M;
        X=M;
        if(!ans) return M;
        return ans;
    }
    void solve2(){
        scanf("%lld%lld%lld",&n,&m,&k);
        for(int i=1;i<=k;++i) scanf("%lld",&t[i]);
        for(int i=1;i<=k;++i) b[i]=t[i],a[i]=((1-i)%b[i]+b[i])%b[i];
        Y=excrt();
        if(Y==-1) { puts("NO");return;}
        if(Y+k-1>m || X>n) { puts("NO");return;}
        for(int i=1;i<=k;++i)
            if(gcd(X,Y+i-1)!=t[i]) { puts("NO");return;}
        
        puts("YES");
    }
}
signed main(){
    subtask2::solve2();
    return 0;
}

转载于:https://www.cnblogs.com/JCNL666/p/10687683.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很高兴为您提供 Mathor Cup 2022 D 题的解题思路。 题目描述: 给定一个 $n\times n$ 的矩阵 $A$,其中 $A_{i,j}\in\{0,1\}$。你可以进行任意次以下操作: 1. 将第 $i$ 行取反(即 $A_{i,j}\rightarrow 1-A_{i,j}$); 2. 将第 $j$ 列取反(即 $A_{i,j}\rightarrow 1-A_{i,j}$)。 请你计算通过若干次操作后,能够使得矩阵 $A$ 的每一行和每一列的 $1$ 的个数相等的最小操作次数。 解题思路: 本题可以使用贪心和二分图匹配的思想来解决。具体步骤如下: 1. 统计每一行和每一列的 $1$ 的个数,设 $row_i$ 表示第 $i$ 行的 $1$ 的个数,$col_j$ 表示第 $j$ 列的 $1$ 的个数。 2. 如果每一行和每一列的 $1$ 的个数都相等,那么无需进行任何操作,直接输出 $0$。 3. 如果某一行 $i$ 的 $1$ 的个数多于其他行的 $1$ 的个数,那么可以将该行取反,将 $row_i$ 减一,将 $col_j$ 加一。 4. 如果某一列 $j$ 的 $1$ 的个数多于其他列的 $1$ 的个数,那么可以将该列取反,将 $col_j$ 减一,将 $row_i$ 加一。 5. 重复步骤 3 和步骤 4,直到每一行和每一列的 $1$ 的个数都相等。 6. 计算进行的操作次数,输出结果。 需要注意的是,为了避免重复计算,我们可以使用二分图匹配的思想来进行操作。将每一行和每一列看做二分图的两个部分,如果某一行 $i$ 的 $1$ 的个数多于其他行的 $1$ 的个数,那么可以将第 $i$ 行和所有 $1$ 的个数比该行少的列建立一条边;如果某一列 $j$ 的 $1$ 的个数多于其他列的 $1$ 的个数,那么可以将第 $j$ 列和所有 $1$ 的个数比该列少的行建立一条边。最后,将二分图的最小路径覆盖数乘以 $2$ 就是最小操作次数。 时间复杂度:$O(n^3)$。 完整代码:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值