bzoj 1043 [HAOI2008]下落的圆盘——圆的周长

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1043

算每个圆被它后面的圆盖住了多少圆弧即可。注意判断这个圆完全被后面盖住的情况。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define db double
using namespace std;
const int N=1005; const db pi=acos(-1),pi2=pi*2;
int n;db x[N],y[N],r[N],rf[N],ans;
struct Node{
  db l,r;
  Node(db a=0,db b=0):l(a),r(b) {}
  bool operator< (const Node &b)const
  {return l<b.l;}
}a[N<<1];
db Sqr(db x){return x*x;}
db dMx(db a,db b){return a>b?a:b;}
db Fix(db a){while(a>pi2)a-=pi2;while(a<0)a+=pi2;return a;}
int main()
{
  scanf("%d",&n);
  for(int i=1;i<=n;i++)
    scanf("%lf%lf%lf",&r[i],&x[i],&y[i]),rf[i]=r[i]*r[i];
  for(int i=1;i<=n;i++)
    {
      int cnt=0;bool flag=0;
      for(int j=i+1;j<=n;j++)
    {
      db d=Sqr(x[i]-x[j])+Sqr(y[i]-y[j]),sd=sqrt(d);
      if(sd>=r[i]+r[j]||r[j]+sd<=r[i])continue;
      if(r[i]+sd<=r[j]){flag=1;break;}
      db fx=atan2(y[j]-y[i],x[j]-x[i]);
      db k=acos((rf[i]+d-rf[j])/(2*r[i]*sd));
      db l=Fix(fx-k),r=Fix(fx+k);//Fix
      if(l<r)a[++cnt]=Node(l,r);
      else a[++cnt]=Node(0,r),a[++cnt]=Node(l,pi2);
    }
      if(flag)continue;///
      sort(a+1,a+cnt+1);
      db ret=pi2;
      for(int x=1,y;x<=cnt;x=y)
    {
      db R=a[x].r;
      for(y=x+1;y<=cnt&&a[y].l<=R;y++)R=dMx(R,a[y].r);
      ret-=R-a[x].l;
    }
      ans+=r[i]*ret;
    }
  printf("%.3f\n",ans);
  return 0;
}

 

转载于:https://www.cnblogs.com/Narh/p/10143977.html

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值