用MapReduce进行数据密集型文本处理-本地聚合

本文译自Working Through Data-Intensive Text Processing with MapReduce

因为最近忙于 Coursera提供 的一些课程,我已经有一段时间没有写博客了。这些课程非常有意思,值得一看。我买了一本书《Data-Intensive Processing with MapReduce》,作者是Jimmy和Chris Dyer。书里以伪码形式总结了一些了MapReduce的重要算法。。我打算用真正的hadoop代码来实现这本书中第3-6章中出现过的算法,以Tom White的《Hadoop经典指南》作为参考。我假设本文的读者已经了解Hadoop和MapReduce,所以本文不再详述基础概念。让我们直接跳到第3章-MapReduce算法设计,从本地聚合开始。

本地聚合(Local Aggregation)

从比较高的抽象层面上来讲,mapper输出数据的时候要先把中间结果写到磁盘上,然后穿过网络传给reducer处理。对于一个mapreduce job来说,将数据写磁盘以及之后的网络传输的代价高昂,因为它们会大大增加延迟。所以,应该尽可能减少mapper产生的数据量,这样才能加快job的处理速度。本地聚合就是这样一种减少中间数据量提高job效率的技术。本地聚合并不能代替reducer,因为reducer可以聚集来自不同mapper的具有同样key的数据。我们有三种本地聚合的方法:

1.使用Hadoop Combiner的功能

2.Data-Intensive Processing with MapReduce这本书里提到的两种在mapper里聚合的方法

当然任何优化都要考虑一些其他因素,我们将在后面讨论这些。

为了演示本地聚合,我在我的MacBookPro上用Cloudera的hadoop-0.20.2-cdh3u3搭建了了一个伪分布集群环境,我们将用查尔斯狄更斯的小说《A Christmas Carol》来运行word count。我计划以后在EC2上用更大的数据来做这个实验。

Combiners

combiner功能由继承了Reducer class的对象实现。事实上,在我们的例子里,我们会重用word count中的reducer来作为combiner。combiner 在配置MapReduce job的时候指定,就像这样:

1 job.setReducerClass(TokenCountReducer.class);

下面是reducer的代码:

01 public class TokenCountReducer extends Reducer<Text,IntWritable,Text,IntWritable>{
02     @Override
03     protected void reduce(Text key, Iterable<IntWritable> values, Context context) throwsIOException, InterruptedException {
04         int count = 0;
05         for (IntWritable value : values) {
06               count+= value.get();
07         }
08         context.write(key,new IntWritable(count));
09     }
10 }

combiner的作用就如它的名字,聚合数据以尽量减少shuffle阶段的网络传输量。如前所述,reducer仍然需要把来自不同mapper的同样的key聚集起来。因为combiner功能只是对过程的一个优化,所以Hadoop框架不能保证combiner会被调用多少次。(配置了combinere就一定会执行,但是执行1次还是n次是预先不确定的)

在Mapper聚合的方法1

不用combiner的话,替代方法之一只需要对我们原来的word count mapper做一个小小的修改:

01 public class PerDocumentMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
02     @Override
03     protected void map(LongWritable key, Text value, Context context) throwsIOException, InterruptedException {
04         IntWritable writableCount = new IntWritable();
05         Text text = new Text();
06         Map<String,Integer> tokenMap = new HashMap<String, Integer>();
07         StringTokenizer tokenizer = new StringTokenizer(value.toString());
08  
09         while(tokenizer.hasMoreElements()){
10             String token = tokenizer.nextToken();
11             Integer count = tokenMap.get(token);
12             if(count == null) count = new Integer(0);
13             count+=1;
14             tokenMap.put(token,count);
15         }
16  
17         Set<String> keys = tokenMap.keySet();
18         for (String s : keys) {
19              text.set(s);
20              writableCount.set(tokenMap.get(s));
21              context.write(text,writableCount);
22         }
23     }
24 }

如我们所看到的,输出的词的计数不再是1,我们用一个map记录处理过的每个词。处理完毕一行中的所有词,然后遍历这个map,输出每个词在一行中的出现次数。

在Mapper聚合的方法2

在mapper中聚合的第二种方法与上面的例子非常相似,但也有两处不同 - 在什么时候建立hashmap以及什么时候输出hashmap中的结果。在上面的例子里,在每次调用map方法的时候创建map并在调用完成的时候输出。在这个例子里,我们会把map作为一个实例变量并在mapper的setUp方法里初始化。同样,map的内容要等到所有的map方法调用都完成之后,调用cleanUp方法的时候才输出。

01 public class AllDocumentMapper extends Mapper<LongWritable,Text,Text,IntWritable> {
02  
03     private  Map<String,Integer> tokenMap;
04  
05     @Override
06     protected void setup(Context context) throws IOException, InterruptedException {
07            tokenMap = new HashMap<String, Integer>();
08     }
09  
10     @Override
11     protected void map(LongWritable key, Text value, Context context) throwsIOException, InterruptedException {
12         StringTokenizer tokenizer = new StringTokenizer(value.toString());
13         while(tokenizer.hasMoreElements()){
14             String token = tokenizer.nextToken();
15             Integer count = tokenMap.get(token);
16             if(count == null) count = new Integer(0);
17             count+=1;
18             tokenMap.put(token,count);
19         }
20     }
21  
22  
23     @Override
24     protected void cleanup(Context context) throws IOException, InterruptedException {
25         IntWritable writableCount = new IntWritable();
26         Text text = new Text();
27         Set<String> keys = tokenMap.keySet();
28         for (String s : keys) {
29             text.set(s);
30             writableCount.set(tokenMap.get(s));
31             context.write(text,writableCount);
32         }
33     }
34 }
正如上面的代码所示,在   mapper里,跨越所有map方法调用,记录每个词的出现次数。通过这样做,大大减少了发送到reducer的记录数量,能够减少MapReduce任务的运行时间。达到的效果与使用MapReduce框架的combiner功能相同,但是这种情况下你要自己保证你的聚合代码是正确的。但是使用这种方法的时候要注意,在map方法调用过程中始终保持状态是有问题的,这有悖于“map”功能的原义。而且,在map调用过程中保持状态也需要关注你的内存使用。总之,根据不同情况来做权衡,选择最合适的办法。

结果

现在让我们来看一下不同mapper的结果。因为job运行在伪分布式模式下,这个运行时间不足以参考,不过我们仍然可以推断出使用了本地聚合之后是如何影响真实集群上运行的MapReduce job的效率的。

每个词输出一次的Mapper:

1 12/09/13 21:25:32 INFO mapred.JobClient:     Reduce shuffle bytes=366010
2 12/09/13 21:25:32 INFO mapred.JobClient:     Reduce output records=7657
3 12/09/13 21:25:32 INFO mapred.JobClient:     Spilled Records=63118
4 12/09/13 21:25:32 INFO mapred.JobClient:     Map output bytes=302886

在mapper中聚合方法1:

1 12/09/13 21:28:15 INFO mapred.JobClient:     Reduce shuffle bytes=354112
2 12/09/13 21:28:15 INFO mapred.JobClient:     Reduce output records=7657
3 12/09/13 21:28:15 INFO mapred.JobClient:     Spilled Records=60704
4 12/09/13 21:28:15 INFO mapred.JobClient:     Map output bytes=293402

在mapper中聚合方法2:

1 12/09/13 21:30:49 INFO mapred.JobClient:     Reduce shuffle bytes=105885
2 12/09/13 21:30:49 INFO mapred.JobClient:     Reduce output records=7657
3 12/09/13 21:30:49 INFO mapred.JobClient:     Spilled Records=15314
4 12/09/13 21:30:49 INFO mapred.JobClient:     Map output bytes=90565

使用了Combiner:

1 12/09/13 21:22:18 INFO mapred.JobClient:     Reduce shuffle bytes=105885
2 12/09/13 21:22:18 INFO mapred.JobClient:     Reduce output records=7657
3 12/09/13 21:22:18 INFO mapred.JobClient:     Spilled Records=15314
4 12/09/13 21:22:18 INFO mapred.JobClient:     Map output bytes=302886
5 12/09/13 21:22:18 INFO mapred.JobClient:     Combine input records=31559
6 12/09/13 21:22:18 INFO mapred.JobClient:     Combine output records=7657

正如所料,没有做任何聚合的Mapper效果最差,然后是“在mapper中聚合方法1”,差之了了。“在mapper中聚合方法2”与使用了combiner的结果很近似。比起前两种方法,他们节省了2/3的shuffle字节数。这等于减少了同样数量的网络数据传输量,十分有利于提高MapReduce job的运行效率。不过要记住,方法2或者combiner并不一定能够应用于所有的MapReduce jobs, word count很适合于这种场景,但是别的情况可不一定。

结论

正如你看到的,使用mapper里聚合方法和combiner是有好处的,不过当你在寻求提升MapReduce jobs的性能的时候你应该多考虑一些因素。至于选哪种方法,这取决于你如何权衡。

本文是《Data Intensive Processing with MapReduce中的算法实现系列文章的最新一篇。该系列文章的第一篇在此 。在第一篇里,我们讨论了使用本地聚合技术来减少shuffle阶段的网络传输数据量。减少需要传输的数据量是提高mapreduce job的性能的最有效的办法。我们在上一篇文章里用了word count来演示本地聚合。因为我们需要的只是一个最终统计结果,而在计算最终结果的过程中改变累加的分组与顺序都不会影响最终结果,所以我们可以重用reducer来作为combiner。但是如果想计算平均值怎么办?这种情况下原来的办法就行不通了,因为总体的平均值不等于各部分平均值的平均。不过如果能够清楚的意识到这一点,我们还是可以使用本地聚合方法的。在本文的例子中我们将使用 在Hadoop经典指南》中出现过的 美国国家气候中心的天气数据  样本来计算1901年每个月的平均气温。使用combiner和mapper中聚合的计算平均值的算法可在《Data Intensive Processing with MapReduce》的3.1.3找到。

没有放之四海而皆准的方法

我们在上一篇文章里介绍了两种减少数据的方法,Hadoop Combiner和在mapper中聚合。Combiner被视为是一个优化措施,因此框架不会保证它会被调用多少次。所以,mapper输出的数据格式必须是符合reducer输入格式的,以便在combiner根本没有运行的情况下最终结果还是正确的。为了计算平均气温,我们需要改变一下mapper的输出。

Mapper 的变化

在 word-count的例子里,没有优化的mapper输出每个词和值为1的计数。combiner和在mapper中聚合的方法通过一个hashmap,将每个词作为key,出现次数作为值,保存在hashmap中来减少输出。如果combiner没有调用,reducer将收到一系列key是单词,值为1的数据,这与之前的结果是一样的。(如果使用在mapper中聚合的话就不会发生这种情况,因为聚合是发生在mapper的代码里的,所以一定会被执行)。为了计算平均值,我们的mapper需要输出一个字符串key(年月)和一个定制的实现了writable接口的对象, TemperatureAveragingPair。这个对象有两个数字属性,气温以及该气温的频数。我们可以参考《Hadoop经典指南》中的 MaximumTemperatureMapper  来建立 AverageTemperatureMapper:
01 public class AverageTemperatureMapper extendsMapper<LongWritable, Text, Text, TemperatureAveragingPair> {
02  //sample line of weather data
03  //0029029070999991901010106004+64333+023450FM-12+000599999V0202701N015919999999N0000001N9-00781+99999102001ADDGF10899199999999999
04  
05  
06     private Text outText = new Text();
07     private TemperatureAveragingPair pair = new TemperatureAveragingPair();
08     private static final int MISSING = 9999;
09  
10     @Override
11     protected void map(LongWritable key, Text value, Context context) throwsIOException, InterruptedException {
12         String line = value.toString();
13         String yearMonth = line.substring(15, 21);
14  
15         int tempStartPosition = 87;
16  
17         if (line.charAt(tempStartPosition) == '+') {
18             tempStartPosition += 1;
19         }
20  
21         int temp = Integer.parseInt(line.substring(tempStartPosition, 92));
22  
23         if (temp != MISSING) {
24             outText.set(yearMonth);
25             pair.set(temp, 1);
26             context.write(outText, pair);
27         }
28     }
29 }

通过让mapper输出key和TemperatureAveragingPair对象,不管combiner有没有执行我们的mapreduce程序都能输出正确的结果。

Combiner

我们要减少传输的数据量,就要尽可能把相同气温的计数合并,但是又不能影响最终的平均数计算。当combiner执行的时候,它会把具有相同key的TemperatureAveragingPair 合并成一个,包含汇总的气温和频度计数。下面是combiner的代码:

01   public class AverageTemperatureCombiner extendsReducer<Text,TemperatureAveragingPair,Text,TemperatureAveragingPair> {
02     private TemperatureAveragingPair pair = new TemperatureAveragingPair();
03  
04     @Override
05     protected voidreduce(Text key, Iterable<TemperatureAveragingPair> values, Context context) throwsIOException, InterruptedException {
06         int temp = 0;
07         int count = 0;
08         for (TemperatureAveragingPair value : values) {
09              temp += value.getTemp().get();
10              count += value.getCount().get();
11         }
12         pair.set(temp,count);
13         context.write(key,pair);
14     }
15 }

但是我们确实很关心如何减少需要传输给reducer的数据量,下面我们将会看看如何实现这个目的。

在mapper中合并平均值

与word-count相同,为了计算均值,在mapper中合并的方法会用到一个hashmap,它以年月为key,以TemperatureAveragingPair为值。合并相同年月的数据的时候我们需要取出以该年月为key的TemperatureAveragingPair对象,将temperature属性和count属性累加。最后在cleanUp方法被调用的时候会输出hashmap中所有的key和TemperatureAveragingPair。

01 public class AverageTemperatureCombiningMapper extendsMapper<LongWritable, Text, Text, TemperatureAveragingPair> {
02  //sample line of weather data
03  //0029029070999991901010106004+64333+023450FM-12+000599999V0202701N015919999999N0000001N9-00781+99999102001ADDGF10899199999999999
04  
05  
06     private static final int MISSING = 9999;
07     private Map<String,TemperatureAveragingPair> pairMap = newHashMap<String,TemperatureAveragingPair>();
08  
09  
10     @Override
11     protected void map(LongWritable key, Text value, Context context) throwsIOException, InterruptedException {
12         String line = value.toString();
13         String yearMonth = line.substring(15, 21);
14  
15         int tempStartPosition = 87;
16  
17         if (line.charAt(tempStartPosition) == '+') {
18             tempStartPosition += 1;
19         }
20  
21         int temp = Integer.parseInt(line.substring(tempStartPosition, 92));
22  
23         if (temp != MISSING) {
24             TemperatureAveragingPair pair = pairMap.get(yearMonth);
25             if(pair == null){
26                 pair = new TemperatureAveragingPair();
27                 pairMap.put(yearMonth,pair);
28             }
29             int temps = pair.getTemp().get() + temp;
30             int count = pair.getCount().get() + 1;
31             pair.set(temps,count);
32         }
33     }
34  
35  
36     @Override
37     protected void cleanup(Context context) throws IOException, InterruptedException {
38         Set<String> keys = pairMap.keySet();
39         Text keyText = new Text();
40         for (String key : keys) {
41              keyText.set(key);
42              context.write(keyText,pairMap.get(key));
43         }
44     }
45 }

用这种在mapper中合并的方法,我们在多次map调用之间保存了信息,确保了能够对产出数据进行削减。尽管保持跨mapper的状态是一件需要小心的事情,但这在某些情况下确实很有效。

Reducer

在这种情况reducer的逻辑就很简单了,遍历每个key的所有值,把temperatures 和counts加和,然后相除。

01 public class AverageTemperatureReducer extendsReducer<Text, TemperatureAveragingPair, Text, IntWritable> {
02     private IntWritable average = new IntWritable();
03  
04     @Override
05     protected voidreduce(Text key, Iterable<TemperatureAveragingPair> values, Context context) throwsIOException, InterruptedException {
06         int temp = 0;
07         int count = 0;
08         for (TemperatureAveragingPair pair : values) {
09             temp += pair.getTemp().get();
10             count += pair.getCount().get();
11         }
12         average.set(temp / count);
13         context.write(key, average);
14     }
15 }

结果

正如预料,使用了combiner和mapper中合并方法的结果大幅减少了输出数据。
没有优化的情况:

01 12/10/10 23:05:28 INFO mapred.JobClient:     Reduce input groups=12
02 12/10/10 23:05:28 INFO mapred.JobClient:     Combine output records=0
03 12/10/10 23:05:28 INFO mapred.JobClient:     Map input records=6565
04 12/10/10 23:05:28 INFO mapred.JobClient:     Reduce shuffle bytes=111594
05 12/10/10 23:05:28 INFO mapred.JobClient:     Reduce output records=12
06 12/10/10 23:05:28 INFO mapred.JobClient:     Spilled Records=13128
07 12/10/10 23:05:28 INFO mapred.JobClient:     Map output bytes=98460
08 12/10/10 23:05:28 INFO mapred.JobClient:     Total committed heap usage (bytes)=269619200
09 12/10/10 23:05:28 INFO mapred.JobClient:     Combine input records=0
10 12/10/10 23:05:28 INFO mapred.JobClient:     Map output records=6564
11 12/10/10 23:05:28 INFO mapred.JobClient:     SPLIT_RAW_BYTES=108
12 12/10/10 23:05:28 INFO mapred.JobClient:     Reduce input records=6564

使用了Combiner的情况:

01 12/10/10 23:07:19 INFO mapred.JobClient:     Reduce input groups=12
02 12/10/10 23:07:19 INFO mapred.JobClient:     Combine output records=12
03 12/10/10 23:07:19 INFO mapred.JobClient:     Map input records=6565
04 12/10/10 23:07:19 INFO mapred.JobClient:     Reduce shuffle bytes=210
05 12/10/10 23:07:19 INFO mapred.JobClient:     Reduce output records=12
06 12/10/10 23:07:19 INFO mapred.JobClient:     Spilled Records=24
07 12/10/10 23:07:19 INFO mapred.JobClient:     Map output bytes=98460
08 12/10/10 23:07:19 INFO mapred.JobClient:     Total committed heap usage (bytes)=269619200
09 12/10/10 23:07:19 INFO mapred.JobClient:     Combine input records=6564
10 12/10/10 23:07:19 INFO mapred.JobClient:     Map output records=6564
11 12/10/10 23:07:19 INFO mapred.JobClient:     SPLIT_RAW_BYTES=108
12 12/10/10 23:07:19 INFO mapred.JobClient:     Reduce input records=12

在mapper中合并的情况:

01 12/10/10 23:09:09 INFO mapred.JobClient:     Reduce input groups=12
02 12/10/10 23:09:09 INFO mapred.JobClient:     Combine output records=0
03 12/10/10 23:09:09 INFO mapred.JobClient:     Map input records=6565
04 12/10/10 23:09:09 INFO mapred.JobClient:     Reduce shuffle bytes=210
05 12/10/10 23:09:09 INFO mapred.JobClient:     Reduce output records=12
06 12/10/10 23:09:09 INFO mapred.JobClient:     Spilled Records=24
07 12/10/10 23:09:09 INFO mapred.JobClient:     Map output bytes=180
08 12/10/10 23:09:09 INFO mapred.JobClient:     Total committed heap usage (bytes)=269619200
09 12/10/10 23:09:09 INFO mapred.JobClient:     Combine input records=0
10 12/10/10 23:09:09 INFO mapred.JobClient:     Map output records=12
11 12/10/10 23:09:09 INFO mapred.JobClient:     SPLIT_RAW_BYTES=108
12 12/10/10 23:09:09 INFO mapred.JobClient:     Reduce input records=12

计算结果:
(注意: 例子里使用的文件中的的温度是摄氏度*10的结果)

Non-Optimized Combiner       In-Mapper-Combiner Mapper
190101 -25
190102 -91
190103 -49
190104 22
190105 76
190106 146
190107 192
190108 170
190109 114
190110 86
190111 -16
190112 -77
190101 -25
190102 -91
190103 -49
190104 22
190105 76
190106 146
190107 192
190108 170
190109 114
190110 86
190111 -16
190112 -77
190101 -25
190102 -91
190103 -49
190104 22
190105 76
190106 146
190107 192
190108 170
190109 114
190110 86
190111 -16
190112 -77
结论

我们用两种场景来演示了本地聚合,一个场景比较简单只要简单重用reducer作为combiner就可以,另一个稍微复杂一些,必须对数据做一定的组织,这两种例子都充分证明了本地聚合能够极大提高处理过程的效率。

相关资源

转载于:https://my.oschina.net/u/1041093/blog/127796

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值