二部图(二分图判定--dfs)

题目链接:二部图

二部图

时间限制: 1000 ms  |  内存限制:65535 KB
难度: 1
描述

二 部图又叫二分图,我们不是求它的二分图最大匹配,也不是完美匹配,也不是多重匹配,而是证明一个图是不是二部图。证明二部图可以用着色来解决,即我们可以 用两种颜色去涂一个图,使的任意相连的两个顶点颜色不相同,切任意两个结点之间最多一条边。为了简化问题,我们每次都从0节点开始涂色

输入
输入:
多组数据
第一行一个整数 n(n<=200) 表示 n个节点
第二行一个整数m 表示 条边
随后 m行 两个整数 u , v 表示 一条边
输出
如果是二部图输出 BICOLORABLE.否则输出 NOT BICOLORABLE.
样例输入
3
3
0 1
1 2
2 0
3
2
0 1
0 2
样例输出
NOT BICOLORABLE.
BICOLORABLE.
二分图定义:有两顶点集且图中每条边的的两个顶点分别位于两个顶点集中,每个顶点集中没有边相连接!

判断二分图的常见方法:开始对任意一未染色的顶点染色,之后判断其相邻的顶点中,若未染色则将其染上和相邻顶点不同的颜色, 若已经染色且颜色和相邻顶点的颜色相同则说明不是二分图,若颜色不同则继续判断。

 错误代码我也要贴出来,因为wa了十几次了,让司老大看也看不出毛病,求大牛指导。

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<vector>
 6 using namespace std;
 7 const int maxn = 205;
 8 int color[maxn];
 9 vector<int> g[maxn];
10 int n,m;
11 bool dfs(int u,int c){
12     color[u] = c;
13     for(int i = 0; i<g[u].size(); i++){
14         if(color[g[u][i]] == c) return false;
15         if(color[g[u][i]] == 0 && !dfs(g[u][i],-c)) return false;
16     }
17     return true;
18 }
19 void solve(){
20     while(scanf("%d%d",&n,&m)!=EOF){
21         int x,y;
22         for(int i = 1; i<=m; i++){
23             scanf("%d%d",&x,&y);
24             g[x].push_back(y);
25             g[y].push_back(x);
26         }
27         int flag = 0;
28         for(int i = 0; i<n; i++){
29             if(color[i] == 0){
30                 if(!dfs(i,1)){
31                     flag = 1;
32                     break;
33                 }
34             }
35         }
36         if(flag) printf("NOT BICOLORABLE.\n");
37         else printf("BICOLORABLE.\n");
38         memset(color,0,sizeof(color));
39         for(int i = 0; i<=n; i++) g[i].clear();
40     }
41 }
42 int main()
43 {
44     solve();
45     return 0;
46 }

 

转载于:https://www.cnblogs.com/littlepear/p/5410804.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值