题意:
数竞选手小r最喜欢做的题型是数列大题,并且每一道都能得到满分。
你可能不相信,但其实他发现了一个结论:只要是数列,无论是给了通项还是给了递推式,无论定义多复杂,都可以被搞成等差数列。这样,只要他精通了等差数列,他就能做出任何数列题目。
等差数列是数列的一种。在等差数列中,任何相邻两项的差相等,该差值称为公差。例如数列3,5,7,9,11,13,⋯3,5,7,9,11,13,⋯就是一个等差数列。 在这个数列中,从第二项起,每项与其前一项之差都等于2,即公差为2。
小r熟知等差数列的各种公式:如果一个等差数列的首项标为a1a1,公差标为d,那么该等差数列第n项的表达式为
an=a1+(n−1)dan=a1+(n−1)d
等差数列的任意两项之间存在关系
an=am+(n−m)dan=am+(n−m)d
和为SnSn,首项a1a1,末项 anan,公差d,项数n,同时可得
Sn=a1+a2+a3+⋯+an=∑n−1i=0(a1+id)=
本文深入探讨了数列的魅力,特别是等差数列,揭示了其背后的数学原理。通过介绍等差数列的基本概念,包括首项、公差和通项公式,文章展示了如何利用这些知识解决复杂的数列问题。此外,还提供了求和公式,帮助读者更好地理解和掌握等差数列的应用。
3014

被折叠的 条评论
为什么被折叠?



