原根学习小记

(1)在数论,特别是整除理论中,原根是一个很重要的概念。

对于两个正整数gcd(a,m)=1,由欧拉定理可知,存在正整数d \le m-1, 比如说欧拉函数d= \phi (m),即小于等于 m 的正整数中与 m 互质的正整数的个数,使得a^d \equiv 1 \pmod{m}。由此,在gcd(a,m)=1时,定义a对模m的指数Ord_m(a)为使a^d \equiv 1 \pmod{m}成立的最小的正整数d。由前知Ord_m(a) 一定小于等于 \phi (m),若Ord_m (a) = \phi (m),则称a是模m的原根

m=7,则\varphi (m)等于6。

  • a=2,由于2^3 = 8 \equiv 1 \pmod{7},而\displaystyle 3 < 6,所以 2 不是模 7 的一个原根。
  • a=3,由于3^1  \equiv 3 \pmod{7}3^2  \equiv 2 \pmod{7}3^3  \equiv 6 \pmod{7}3^4  \equiv 4 \pmod{7}3^5  \equiv 5 \pmod{7}3^6  \equiv 1 \pmod{7},因此有Ord_7(3) = 6 =\varphi (7),所以 3 是模 7 的一个原根。

(2)原根的一些性质

  • 可以证明,如果正整数(a,m)=1和正整数 d 满足a^d \equiv 1 \pmod{m},则 d 整除 \phi (m)。因此Ord_m (a)整除\phi (m)。在例子中,当a=3时,我们仅需要验证 3 的 1 、2、3 和 6 次方模 7 的余数即可。
  • \delta = Ord_m (a),则a^0,a^1,a^2 \cdots , a^{\delta -1}模 m 两两不同余。因此当a是模m的原根时,a^0,a^1,a^2 \cdots , a^{\delta -1}构成模 m 的简化剩余系。
  • m有原根的充要条件是m = 1 , 2 , 4 , p^n , 2p^n,其中p是奇质数,n是任意正整数。

转载于:https://www.cnblogs.com/jianglangcaijin/p/3446735.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值