hdu6052

hdu6052

题意

给出一个 \(n * m\) 的网格矩阵,每个格子都有颜色,随机选出一个子矩阵,问颜色种数的期望。

分析

那么我们可以去算所有矩阵的颜色种数之和,也就是每种颜色出现过的矩阵的个数之和,除以子矩阵的个数就是答案。

为了避免重复,我们要规定哪些矩阵属于某个格子。如果一些格子颜色为 \(1\) ,矩阵 \(A\) 中所有颜色为 \(1\) 的格子中,按从左到右,从上到下的顺序,一定有一个格子 \(a\) 在前,我们把这个矩阵 \(A\) 叫做(归为) \(a\) 的子矩阵。(某个子矩阵属于那个格子,是针对那个格子的颜色以及子矩阵中具有相同颜色的格子而言)

计算每种颜色在多少个子矩阵中出现过,直接去枚举矩阵,枚举到某一个格子时,它的下边界一定是 \(n\) ,上边界先设为当前行,在没有改变上边界的情况下,右边界为 \(m\) ,向左寻找,如果不存在相同颜色的格子,那么左边界为 \(1\) ,计算包含这个格子的矩阵数量(边界的意思是边界里的格子都能用)。

然后上边界不断上移,更新左右边界的值。

code

#include<bits/stdc++.h>
typedef long long ll;
using namespace std;
const int MAXN = 1e2 + 10;
int n, m;
int c[MAXN][MAXN];
ll fun(int x, int y) {
    ll sum = 0;
    int L = 1, R = m;
    for(int i = x; i >= 1; i--) {
        if(i != x && c[i][y] == c[x][y]) break;
        int l = 1, r = m;
        for(int j = y - 1; j >= 1; j--) {
            if(c[i][j] == c[x][y]) {
                l = j + 1;
                break;
            }
        }
        if(i != x) {
            for(int j = y + 1; j <= R; j++) {
                if(c[i][j] == c[x][y]) {
                    r = j - 1;
                    break;
                }
            }
        }
        L = max(L, l);
        R = min(R, r);
        sum += 1LL * (y - L + 1) * (R - y + 1) * (n - x + 1);
    }
    return sum;
}
int main() {
    int T;
    scanf("%d", &T);
    while(T--) {
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= m; j++) {
                scanf("%d", &c[i][j]);
            }
        }
        ll sum = 0, num = 0;
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= m; j++) {
                sum += 1LL * (n - i + 1) * (m - j + 1);
                num += fun(i, j);
            }
        }
        printf("%.9f\n", 1.0 * num / sum);
    }
    return 0;
}

转载于:https://www.cnblogs.com/ftae/p/7260515.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值